Seismic performance of RC bent columns: Experimental, numerical and life-cycle cost analysis

Reinforced concrete (RC) bent structures are widely used in single-story industrial buildings, with a considerable portion of them located in high-intensity seismic areas. Therefore, it is significant to study the seismic performance of the RC bent column while keeping construction costs in mind. To...

Full description

Bibliographic Details
Main Authors: Yu Xia, Xiaodong Li, Tianyu Xie, Ruizhao Zhu, Guanghao Wang, Guixiang Yi, Jiawei Li
Format: Article
Language:English
Published: Elsevier 2024-07-01
Series:Case Studies in Construction Materials
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2214509523008732
Description
Summary:Reinforced concrete (RC) bent structures are widely used in single-story industrial buildings, with a considerable portion of them located in high-intensity seismic areas. Therefore, it is significant to study the seismic performance of the RC bent column while keeping construction costs in mind. To evaluate the seismic performance of the RC bent column from an economic perspective, pseudo-static tests combined with construction cost analysis were first carried out on three RC bent columns designed according to different versions of Chinese codes. A numerical simulation method based on the extended finite element method (XFEM) for the RC bent column was then established and verified. Subsequently, the relationship between the local damage index related to the apparent damage characteristics and the overall damage index was established by conducting numerical analysis on RC bent columns with different design parameters. Based on the established relationship between the local and overall damage indexes, a calculation method for the residual bearing capacity based on apparent damage was developed. The results show that, when compared to the constructional requirements in the Chinese code for seismic design of industrial and civil buildings published in 1978 (TJ11–78), the constructional requirements in the Chinese code for seismic design of buildings published in 1989 (GBJ11–89) can effectively reduce the stress concentration at the column bottom and delay the formation of the plastic hinge with minimal cost increase, while the constructional requirements in the Chinese code for seismic design of buildings published in 2016 (GB50011–2010) can further effectively reduce the damage to the upper column. Besides, the constructional requirements in GBJ11–89 and GB50011–2010 can improve the energy dissipation and maximum bearing capacity of the RC bent column while decrease the cost/ductility coefficient by more than 5.0 %. The proposed calculation method can effectively predict the residual bearing capacity of earthquake-damaged RC bent columns by comparing the calculation results to the test results.
ISSN:2214-5095