The Critical Role of Intrinsic Membrane Oscillations

Intrinsic, rhythmic subthreshold oscillations have been described in neurons of regions throughout the brain and have been found to influence the timing of action potentials induced by synaptic inputs. Some oscillations are sodium channel-dependent while others are calcium channel-dependent. These o...

Full description

Bibliographic Details
Main Authors: Sang-Hun Lee, Francisco J. Urbano, Edgar Garcia-Rill
Format: Article
Language:English
Published: Cell Physiol Biochem Press GmbH & Co KG 2018-09-01
Series:Neurosignals
Subjects:
Online Access:https://www.karger.com/Article/FullText/493900
Description
Summary:Intrinsic, rhythmic subthreshold oscillations have been described in neurons of regions throughout the brain and have been found to influence the timing of action potentials induced by synaptic inputs. Some oscillations are sodium channel-dependent while others are calcium channel-dependent. These oscillations allow neurons to fire coherently at preferred frequencies and represent the main mechanism for maintaining high frequency network activity, especially in the cortex. Because cortical circuits are incapable of maintaining high frequency activity in the gamma range for prolonged periods, those processes dependent on continuous gamma band activity are subserved by subthreshold oscillations. As such, intrinsic oscillations, coupled with synaptic circuits, are essential to prolonged maintenance of such functions as sensory perception and “binding”, problem solving, memory, waking, and rapid eye movement (REM) sleep.
ISSN:1424-862X
1424-8638