Hybrid material integration for active photonic applications

The huge development of micro-/nano-manufacturing techniques on different materials has greatly expanded the possibilities of realizing on-chip multifunctional devices on photonic integrated circuits. In recent years, we have witnessed technological advancements, such as active photonic applications...

Full description

Bibliographic Details
Main Authors: Chengyu Chen, Yuping Chen, Zhifan Fang, Rui Ge, Jiangwei Wu, Xianfeng Chen
Format: Article
Language:English
Published: AIP Publishing LLC 2024-03-01
Series:APL Photonics
Online Access:http://dx.doi.org/10.1063/5.0187924
Description
Summary:The huge development of micro-/nano-manufacturing techniques on different materials has greatly expanded the possibilities of realizing on-chip multifunctional devices on photonic integrated circuits. In recent years, we have witnessed technological advancements, such as active photonic applications through hybrid integration. In this Perspective, we first summarize the integrated photonic materials, hybrid integration technologies, and corresponding coupling techniques in hybrid integration and give the technique prospects. We also introduce significant advances in hybrid integration technologies for active photonic applications, such as laser sources, optical frequency combs, and modulators, and give our views that are likely to develop rapidly. Finally, we discuss the challenges in hybrid technologies and photonic applications.
ISSN:2378-0967