Rheological Properties of Small-Molecular Liquids at High Shear Strain Rates

Molecular-scale understanding of rheological properties of small-molecular liquids and polymers is critical to optimizing their performance in practical applications such as lubrication and hydraulic fracking. We combine nonequilibrium molecular dynamics simulations with two unsupervised machine lea...

Full description

Bibliographic Details
Main Authors: Wenhui Li, JCS Kadupitiya, Vikram Jadhao
Format: Article
Language:English
Published: MDPI AG 2023-05-01
Series:Polymers
Subjects:
Online Access:https://www.mdpi.com/2073-4360/15/9/2166
_version_ 1797601802785390592
author Wenhui Li
JCS Kadupitiya
Vikram Jadhao
author_facet Wenhui Li
JCS Kadupitiya
Vikram Jadhao
author_sort Wenhui Li
collection DOAJ
description Molecular-scale understanding of rheological properties of small-molecular liquids and polymers is critical to optimizing their performance in practical applications such as lubrication and hydraulic fracking. We combine nonequilibrium molecular dynamics simulations with two unsupervised machine learning methods: principal component analysis (PCA) and t-distributed stochastic neighbor embedding (t-SNE), to extract the correlation between the rheological properties and molecular structure of squalane sheared at high strain rates (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mn>10</mn><mn>6</mn></msup></semantics></math></inline-formula>–<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mn>10</mn><mn>10</mn></msup></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow><mi mathvariant="normal">s</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></semantics></math></inline-formula>) for which substantial shear thinning is observed under pressures <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>P</mi><mo>∈</mo><mn>0.1</mn></mrow></semantics></math></inline-formula>–955 MPa at 293 K. Intramolecular atom pair orientation tensors of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>435</mn><mo>×</mo><mn>6</mn></mrow></semantics></math></inline-formula> dimensions and the intermolecular atom pair orientation tensors of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>61</mn><mo>×</mo><mn>6</mn></mrow></semantics></math></inline-formula> dimensions are reduced and visualized using PCA and t-SNE to assess the changes in the orientation order during the shear thinning of squalane. Dimension reduction of intramolecular orientation tensors at low pressures <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>P</mi><mo>=</mo><mn>0.1</mn><mo>,</mo><mn>100</mn></mrow></semantics></math></inline-formula> MPa reveals a strong correlation between changes in strain rate and the orientation of the side-backbone atom pairs, end-backbone atom pairs, short backbone-backbone atom pairs, and long backbone-backbone atom pairs associated with a squalane molecule. At high pressures <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>P</mi><mo>≥</mo><mn>400</mn></mrow></semantics></math></inline-formula> MPa, the orientation tensors are better classified by these different pair types rather than strain rate, signaling an overall limited evolution of intramolecular orientation with changes in strain rate. Dimension reduction also finds no clear evidence of the link between shear thinning at high pressures and changes in the intermolecular orientation. The alignment of squalane molecules is found to be saturated over the entire range of rates during which squalane exhibits substantial shear thinning at high pressures.
first_indexed 2024-03-11T04:09:03Z
format Article
id doaj.art-57ce509d6afb4652ab9091f7c4cd78e9
institution Directory Open Access Journal
issn 2073-4360
language English
last_indexed 2024-03-11T04:09:03Z
publishDate 2023-05-01
publisher MDPI AG
record_format Article
series Polymers
spelling doaj.art-57ce509d6afb4652ab9091f7c4cd78e92023-11-17T23:36:06ZengMDPI AGPolymers2073-43602023-05-01159216610.3390/polym15092166Rheological Properties of Small-Molecular Liquids at High Shear Strain RatesWenhui Li0JCS Kadupitiya1Vikram Jadhao2Intelligent Systems Engineering, Indiana University, Bloomington, IN 47408, USAIntelligent Systems Engineering, Indiana University, Bloomington, IN 47408, USAIntelligent Systems Engineering, Indiana University, Bloomington, IN 47408, USAMolecular-scale understanding of rheological properties of small-molecular liquids and polymers is critical to optimizing their performance in practical applications such as lubrication and hydraulic fracking. We combine nonequilibrium molecular dynamics simulations with two unsupervised machine learning methods: principal component analysis (PCA) and t-distributed stochastic neighbor embedding (t-SNE), to extract the correlation between the rheological properties and molecular structure of squalane sheared at high strain rates (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mn>10</mn><mn>6</mn></msup></semantics></math></inline-formula>–<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mn>10</mn><mn>10</mn></msup></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow><mi mathvariant="normal">s</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></semantics></math></inline-formula>) for which substantial shear thinning is observed under pressures <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>P</mi><mo>∈</mo><mn>0.1</mn></mrow></semantics></math></inline-formula>–955 MPa at 293 K. Intramolecular atom pair orientation tensors of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>435</mn><mo>×</mo><mn>6</mn></mrow></semantics></math></inline-formula> dimensions and the intermolecular atom pair orientation tensors of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>61</mn><mo>×</mo><mn>6</mn></mrow></semantics></math></inline-formula> dimensions are reduced and visualized using PCA and t-SNE to assess the changes in the orientation order during the shear thinning of squalane. Dimension reduction of intramolecular orientation tensors at low pressures <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>P</mi><mo>=</mo><mn>0.1</mn><mo>,</mo><mn>100</mn></mrow></semantics></math></inline-formula> MPa reveals a strong correlation between changes in strain rate and the orientation of the side-backbone atom pairs, end-backbone atom pairs, short backbone-backbone atom pairs, and long backbone-backbone atom pairs associated with a squalane molecule. At high pressures <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>P</mi><mo>≥</mo><mn>400</mn></mrow></semantics></math></inline-formula> MPa, the orientation tensors are better classified by these different pair types rather than strain rate, signaling an overall limited evolution of intramolecular orientation with changes in strain rate. Dimension reduction also finds no clear evidence of the link between shear thinning at high pressures and changes in the intermolecular orientation. The alignment of squalane molecules is found to be saturated over the entire range of rates during which squalane exhibits substantial shear thinning at high pressures.https://www.mdpi.com/2073-4360/15/9/2166shear thinningmolecular orientationnonequilibrium molecular dynamics simulationsmachine learningprincipal component analysiselastohydrodynamic lubrication
spellingShingle Wenhui Li
JCS Kadupitiya
Vikram Jadhao
Rheological Properties of Small-Molecular Liquids at High Shear Strain Rates
Polymers
shear thinning
molecular orientation
nonequilibrium molecular dynamics simulations
machine learning
principal component analysis
elastohydrodynamic lubrication
title Rheological Properties of Small-Molecular Liquids at High Shear Strain Rates
title_full Rheological Properties of Small-Molecular Liquids at High Shear Strain Rates
title_fullStr Rheological Properties of Small-Molecular Liquids at High Shear Strain Rates
title_full_unstemmed Rheological Properties of Small-Molecular Liquids at High Shear Strain Rates
title_short Rheological Properties of Small-Molecular Liquids at High Shear Strain Rates
title_sort rheological properties of small molecular liquids at high shear strain rates
topic shear thinning
molecular orientation
nonequilibrium molecular dynamics simulations
machine learning
principal component analysis
elastohydrodynamic lubrication
url https://www.mdpi.com/2073-4360/15/9/2166
work_keys_str_mv AT wenhuili rheologicalpropertiesofsmallmolecularliquidsathighshearstrainrates
AT jcskadupitiya rheologicalpropertiesofsmallmolecularliquidsathighshearstrainrates
AT vikramjadhao rheologicalpropertiesofsmallmolecularliquidsathighshearstrainrates