Effect of surface retaining elements on rock stability: laboratory investigation with sand powder 3D printing

Abstract This study aims to investigate the beneficial effects of surface retaining elements (SREs) on the mechanical behaviors of bolted rock and roadway stability. 3D printing (3DP) technology is utilized to create rock analogue prismatic specimens for conducting this investigation. Uniaxial compr...

Full description

Bibliographic Details
Main Authors: Hao Feng, Lishuai Jiang, Qingwei Wang, Peng Tang, Atsushi Sainoki, Hani S. Mitri
Format: Article
Language:English
Published: SpringerOpen 2023-09-01
Series:International Journal of Coal Science & Technology
Subjects:
Online Access:https://doi.org/10.1007/s40789-023-00607-3
Description
Summary:Abstract This study aims to investigate the beneficial effects of surface retaining elements (SREs) on the mechanical behaviors of bolted rock and roadway stability. 3D printing (3DP) technology is utilized to create rock analogue prismatic specimens for conducting this investigation. Uniaxial compression tests with acoustic emission (AE) and digital image correlation techniques have been conducted on 3DP specimens bolted with different SREs. The results demonstrate that the strength and modulus of elasticity of the bolted specimens show a positive correlation with the area of the SRE; the AE characteristics of the bolted specimens are higher than those of the unbolted specimen, but they decrease with an increase in SRE area, thus further improving the integrity of the bolted specimens. The reinforcement effect of SREs on the surrounding rock of roadways is further analyzed using numerical modelling and field test. The results provide a better understanding of the role of SREs in rock bolting and the optimization of rock bolting design. Furthermore, they verify the feasibility of 3DP for rock analogues in rock mechanics tests.
ISSN:2095-8293
2198-7823