Modeling Linear Polarization of the Didymos–Dimorphos System before and after the DART Impact

We analyze the polarization observations of the Didymos–Dimorphos system before and after the impact by the NASA Double Asteroid Redirection Test spacecraft on Dimorphos. We fit empirical polarization phase curve models and statistically confirm the discovery by Gray et al. about the degree of linea...

Full description

Bibliographic Details
Main Authors: Antti Penttilä, Karri Muinonen, Mikael Granvik, Zuri Gray, Stefano Bagnulo, Ludmilla Kolokolova, Fernando Moreno
Format: Article
Language:English
Published: IOP Publishing 2024-01-01
Series:The Planetary Science Journal
Subjects:
Online Access:https://doi.org/10.3847/PSJ/ad1757
Description
Summary:We analyze the polarization observations of the Didymos–Dimorphos system before and after the impact by the NASA Double Asteroid Redirection Test spacecraft on Dimorphos. We fit empirical polarization phase curve models and statistically confirm the discovery by Gray et al. about the degree of linear polarization of the system decreasing on the impact and remaining altered for at least 30 days post-impact. With numerical simulations of particles in the geometric optics domain, we estimate the dominant size of the particles either in the regolith of Didymos and Dimorphos or in the impact-driven ejecta cloud to be several hundred micrometers. The observed change between the pre-impact and post-impact systems indicates either a decrease in average particle size of some tens of micrometers or a decreased level of space weathering.
ISSN:2632-3338