An Optimization Method for the Station Layout of a Microseismic Monitoring System in Underground Mine Engineering
The layout of microseismic monitoring (MSM) station networks is very important to ensure the effectiveness of source location inversion; however, it is difficult to meet the complexity and mobility requirements of the technology in this new era. This paper proposes a network optimization method base...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2022-06-01
|
Series: | Sensors |
Subjects: | |
Online Access: | https://www.mdpi.com/1424-8220/22/13/4775 |
_version_ | 1797408169654222848 |
---|---|
author | Zilong Zhou Congcong Zhao Yinghua Huang |
author_facet | Zilong Zhou Congcong Zhao Yinghua Huang |
author_sort | Zilong Zhou |
collection | DOAJ |
description | The layout of microseismic monitoring (MSM) station networks is very important to ensure the effectiveness of source location inversion; however, it is difficult to meet the complexity and mobility requirements of the technology in this new era. This paper proposes a network optimization method based on the geometric parameters of the proposed sensor-point database. First, according to the monitoring requirements and mine-working conditions, the overall proposed point database and model are built. Second, through the developed model, the proposed coverage area, envelope volume, effective coverage radius, and minimum energy level induction value are comprehensively calculated, and the evaluation reference index is constructed. Third, the effective maximum envelope volume is determined by taking the analyzed limit of monitoring induction energy level as the limit. Finally, the optimal design method is identified and applied to provide a sensor station layout network with the maximum energy efficiency. The method, defined as the S-V-E-R-V model, is verified by a comparison with the existing layout scheme and numerical simulation. The results show that the optimization method has strong practicability and efficiency, compared with the mine’s layout following the current method. Simulation experiments show that the optimization effect of this method meets the mine’s engineering requirements for the variability, intelligence, and high efficiency of the microseismic monitoring station network layout, and satisfies the needs of event identification and location dependent on the station network. |
first_indexed | 2024-03-09T03:55:28Z |
format | Article |
id | doaj.art-57e667c062344d9194619dcc6f10952e |
institution | Directory Open Access Journal |
issn | 1424-8220 |
language | English |
last_indexed | 2024-03-09T03:55:28Z |
publishDate | 2022-06-01 |
publisher | MDPI AG |
record_format | Article |
series | Sensors |
spelling | doaj.art-57e667c062344d9194619dcc6f10952e2023-12-03T14:22:03ZengMDPI AGSensors1424-82202022-06-012213477510.3390/s22134775An Optimization Method for the Station Layout of a Microseismic Monitoring System in Underground Mine EngineeringZilong Zhou0Congcong Zhao1Yinghua Huang2School of Resources and Safety Engineering, Central South University, Changsha 410083, ChinaSchool of Resources and Safety Engineering, Central South University, Changsha 410083, ChinaSchool of Resources and Safety Engineering, Central South University, Changsha 410083, ChinaThe layout of microseismic monitoring (MSM) station networks is very important to ensure the effectiveness of source location inversion; however, it is difficult to meet the complexity and mobility requirements of the technology in this new era. This paper proposes a network optimization method based on the geometric parameters of the proposed sensor-point database. First, according to the monitoring requirements and mine-working conditions, the overall proposed point database and model are built. Second, through the developed model, the proposed coverage area, envelope volume, effective coverage radius, and minimum energy level induction value are comprehensively calculated, and the evaluation reference index is constructed. Third, the effective maximum envelope volume is determined by taking the analyzed limit of monitoring induction energy level as the limit. Finally, the optimal design method is identified and applied to provide a sensor station layout network with the maximum energy efficiency. The method, defined as the S-V-E-R-V model, is verified by a comparison with the existing layout scheme and numerical simulation. The results show that the optimization method has strong practicability and efficiency, compared with the mine’s layout following the current method. Simulation experiments show that the optimization effect of this method meets the mine’s engineering requirements for the variability, intelligence, and high efficiency of the microseismic monitoring station network layout, and satisfies the needs of event identification and location dependent on the station network.https://www.mdpi.com/1424-8220/22/13/4775underground minemicroseismic monitoringnetwork layoutmethod optimizationS-V-E-R-V modelmonitoring efficiency |
spellingShingle | Zilong Zhou Congcong Zhao Yinghua Huang An Optimization Method for the Station Layout of a Microseismic Monitoring System in Underground Mine Engineering Sensors underground mine microseismic monitoring network layout method optimization S-V-E-R-V model monitoring efficiency |
title | An Optimization Method for the Station Layout of a Microseismic Monitoring System in Underground Mine Engineering |
title_full | An Optimization Method for the Station Layout of a Microseismic Monitoring System in Underground Mine Engineering |
title_fullStr | An Optimization Method for the Station Layout of a Microseismic Monitoring System in Underground Mine Engineering |
title_full_unstemmed | An Optimization Method for the Station Layout of a Microseismic Monitoring System in Underground Mine Engineering |
title_short | An Optimization Method for the Station Layout of a Microseismic Monitoring System in Underground Mine Engineering |
title_sort | optimization method for the station layout of a microseismic monitoring system in underground mine engineering |
topic | underground mine microseismic monitoring network layout method optimization S-V-E-R-V model monitoring efficiency |
url | https://www.mdpi.com/1424-8220/22/13/4775 |
work_keys_str_mv | AT zilongzhou anoptimizationmethodforthestationlayoutofamicroseismicmonitoringsysteminundergroundmineengineering AT congcongzhao anoptimizationmethodforthestationlayoutofamicroseismicmonitoringsysteminundergroundmineengineering AT yinghuahuang anoptimizationmethodforthestationlayoutofamicroseismicmonitoringsysteminundergroundmineengineering AT zilongzhou optimizationmethodforthestationlayoutofamicroseismicmonitoringsysteminundergroundmineengineering AT congcongzhao optimizationmethodforthestationlayoutofamicroseismicmonitoringsysteminundergroundmineengineering AT yinghuahuang optimizationmethodforthestationlayoutofamicroseismicmonitoringsysteminundergroundmineengineering |