Geometry of <em>k</em>-Yamabe Solitons on Euclidean Spaces and Its Applications to Concurrent Vector Fields

In this paper, we give some classifications of the <i>k</i>-Yamabe solitons on the hypersurfaces of the Euclidean spaces from the vector field point of view. In several results on <i>k</i>-Yamabe solitons with a concurrent vector field on submanifolds in Riemannian manifolds,...

Full description

Bibliographic Details
Main Authors: Akram Ali, Fatemah Mofarreh, Pişcoran Laurian-Ioan, Nadia Alluhaibi
Format: Article
Language:English
Published: MDPI AG 2021-01-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/13/2/222
_version_ 1797406030302281728
author Akram Ali
Fatemah Mofarreh
Pişcoran Laurian-Ioan
Nadia Alluhaibi
author_facet Akram Ali
Fatemah Mofarreh
Pişcoran Laurian-Ioan
Nadia Alluhaibi
author_sort Akram Ali
collection DOAJ
description In this paper, we give some classifications of the <i>k</i>-Yamabe solitons on the hypersurfaces of the Euclidean spaces from the vector field point of view. In several results on <i>k</i>-Yamabe solitons with a concurrent vector field on submanifolds in Riemannian manifolds, is proved that a <i>k</i>-Yamabe soliton <inline-formula><math display="inline"><semantics><mrow><mo>(</mo><msup><mi>M</mi><mi>n</mi></msup><mo>,</mo><mi>g</mi><mo>,</mo><msup><mi>v</mi><mi>T</mi></msup><mo>,</mo><mi>λ</mi><mo>)</mo></mrow></semantics></math></inline-formula> on a hypersurface in the Euclidean space <inline-formula><math display="inline"><semantics><msup><mi mathvariant="double-struck">R</mi><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msup></semantics></math></inline-formula> is contained either in a hypersphere or a hyperplane. We provide an example to support this study and all of the results in this paper can be implemented to Yamabe solitons for <i>k</i>-curvature with <inline-formula><math display="inline"><semantics><mrow><mi>k</mi><mo>=</mo><mn>1</mn></mrow></semantics></math></inline-formula>.
first_indexed 2024-03-09T03:20:17Z
format Article
id doaj.art-57fbf0805794481f9006d99085f4afac
institution Directory Open Access Journal
issn 2073-8994
language English
last_indexed 2024-03-09T03:20:17Z
publishDate 2021-01-01
publisher MDPI AG
record_format Article
series Symmetry
spelling doaj.art-57fbf0805794481f9006d99085f4afac2023-12-03T15:11:59ZengMDPI AGSymmetry2073-89942021-01-0113222210.3390/sym13020222Geometry of <em>k</em>-Yamabe Solitons on Euclidean Spaces and Its Applications to Concurrent Vector FieldsAkram Ali0Fatemah Mofarreh1Pişcoran Laurian-Ioan2Nadia Alluhaibi3Department of Mathematics, College of Science, King Khalid University, Abha 62529, Saudi ArabiaMathematical Science Department, Faculty of Science, Princess Nourah bint Abdulrahman University, Riyadh 11546, Saudi ArabiaDepartment of Mathematics and Computer Science Victoriei 76, North University Center of Baia Mare Technical University of Cluj Napoca, 430122 Baia Mare, RomaniaDepartment of Mathematics, Science and Arts College, Rabigh Campus, King Abdulaziz University, Jeddah 21911, Saudi ArabiaIn this paper, we give some classifications of the <i>k</i>-Yamabe solitons on the hypersurfaces of the Euclidean spaces from the vector field point of view. In several results on <i>k</i>-Yamabe solitons with a concurrent vector field on submanifolds in Riemannian manifolds, is proved that a <i>k</i>-Yamabe soliton <inline-formula><math display="inline"><semantics><mrow><mo>(</mo><msup><mi>M</mi><mi>n</mi></msup><mo>,</mo><mi>g</mi><mo>,</mo><msup><mi>v</mi><mi>T</mi></msup><mo>,</mo><mi>λ</mi><mo>)</mo></mrow></semantics></math></inline-formula> on a hypersurface in the Euclidean space <inline-formula><math display="inline"><semantics><msup><mi mathvariant="double-struck">R</mi><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msup></semantics></math></inline-formula> is contained either in a hypersphere or a hyperplane. We provide an example to support this study and all of the results in this paper can be implemented to Yamabe solitons for <i>k</i>-curvature with <inline-formula><math display="inline"><semantics><mrow><mi>k</mi><mo>=</mo><mn>1</mn></mrow></semantics></math></inline-formula>.https://www.mdpi.com/2073-8994/13/2/222concurrent vector fieldsk-Yamabe solitonshypersurfaceEuclidean spaces
spellingShingle Akram Ali
Fatemah Mofarreh
Pişcoran Laurian-Ioan
Nadia Alluhaibi
Geometry of <em>k</em>-Yamabe Solitons on Euclidean Spaces and Its Applications to Concurrent Vector Fields
Symmetry
concurrent vector fields
k-Yamabe solitons
hypersurface
Euclidean spaces
title Geometry of <em>k</em>-Yamabe Solitons on Euclidean Spaces and Its Applications to Concurrent Vector Fields
title_full Geometry of <em>k</em>-Yamabe Solitons on Euclidean Spaces and Its Applications to Concurrent Vector Fields
title_fullStr Geometry of <em>k</em>-Yamabe Solitons on Euclidean Spaces and Its Applications to Concurrent Vector Fields
title_full_unstemmed Geometry of <em>k</em>-Yamabe Solitons on Euclidean Spaces and Its Applications to Concurrent Vector Fields
title_short Geometry of <em>k</em>-Yamabe Solitons on Euclidean Spaces and Its Applications to Concurrent Vector Fields
title_sort geometry of em k em yamabe solitons on euclidean spaces and its applications to concurrent vector fields
topic concurrent vector fields
k-Yamabe solitons
hypersurface
Euclidean spaces
url https://www.mdpi.com/2073-8994/13/2/222
work_keys_str_mv AT akramali geometryofemkemyamabesolitonsoneuclideanspacesanditsapplicationstoconcurrentvectorfields
AT fatemahmofarreh geometryofemkemyamabesolitonsoneuclideanspacesanditsapplicationstoconcurrentvectorfields
AT piscoranlaurianioan geometryofemkemyamabesolitonsoneuclideanspacesanditsapplicationstoconcurrentvectorfields
AT nadiaalluhaibi geometryofemkemyamabesolitonsoneuclideanspacesanditsapplicationstoconcurrentvectorfields