Ground state and nodal solutions for critical Kirchhoff–Schrödinger–Poisson systems with an asymptotically 3-linear growth nonlinearity

Abstract In this paper, we consider the existence of a least energy nodal solution and a ground state solution, energy doubling property and asymptotic behavior of solutions of the following critical problem: { − ( a + b ∫ R 3 | ∇ u | 2 d x ) Δ u + V ( x ) u + λ ϕ u = | u | 4 u + k f ( u ) , x ∈ R 3...

Full description

Bibliographic Details
Main Authors: Chungen Liu, Hua-Bo Zhang
Format: Article
Language:English
Published: SpringerOpen 2020-08-01
Series:Boundary Value Problems
Subjects:
Online Access:http://link.springer.com/article/10.1186/s13661-020-01421-5
_version_ 1818508996326195200
author Chungen Liu
Hua-Bo Zhang
author_facet Chungen Liu
Hua-Bo Zhang
author_sort Chungen Liu
collection DOAJ
description Abstract In this paper, we consider the existence of a least energy nodal solution and a ground state solution, energy doubling property and asymptotic behavior of solutions of the following critical problem: { − ( a + b ∫ R 3 | ∇ u | 2 d x ) Δ u + V ( x ) u + λ ϕ u = | u | 4 u + k f ( u ) , x ∈ R 3 , − Δ ϕ = u 2 , x ∈ R 3 . $$ \textstyle\begin{cases} -(a+ b\int _{\mathbb{R}^{3}} \vert \nabla u \vert ^{2}\,dx)\Delta u+V(x)u+\lambda \phi u= \vert u \vert ^{4}u+ k f(u),&x\in \mathbb{R}^{3}, \\ -\Delta \phi =u^{2},&x\in \mathbb{R}^{3}. \end{cases} $$ By nodal Nehari manifold method, for each b > 0 $b>0$ , we obtain a least energy nodal solution u b $u_{b}$ and a ground-state solution v b $v_{b}$ to this problem when k ≫ 1 $k\gg1$ , where the nonlinear function f ∈ C ( R , R ) $f\in C(\mathbb{R},\mathbb{R})$ . We also give an analysis on the behavior of u b $u_{b}$ as the parameter b → 0 $b\to 0$ .
first_indexed 2024-12-10T22:39:30Z
format Article
id doaj.art-581bca98a67646d1bb96e1267f2a14c8
institution Directory Open Access Journal
issn 1687-2770
language English
last_indexed 2024-12-10T22:39:30Z
publishDate 2020-08-01
publisher SpringerOpen
record_format Article
series Boundary Value Problems
spelling doaj.art-581bca98a67646d1bb96e1267f2a14c82022-12-22T01:30:45ZengSpringerOpenBoundary Value Problems1687-27702020-08-012020112810.1186/s13661-020-01421-5Ground state and nodal solutions for critical Kirchhoff–Schrödinger–Poisson systems with an asymptotically 3-linear growth nonlinearityChungen Liu0Hua-Bo Zhang1Department of Mathematics, Guangzhou UniversityDepartment of Mathematics, Guangzhou UniversityAbstract In this paper, we consider the existence of a least energy nodal solution and a ground state solution, energy doubling property and asymptotic behavior of solutions of the following critical problem: { − ( a + b ∫ R 3 | ∇ u | 2 d x ) Δ u + V ( x ) u + λ ϕ u = | u | 4 u + k f ( u ) , x ∈ R 3 , − Δ ϕ = u 2 , x ∈ R 3 . $$ \textstyle\begin{cases} -(a+ b\int _{\mathbb{R}^{3}} \vert \nabla u \vert ^{2}\,dx)\Delta u+V(x)u+\lambda \phi u= \vert u \vert ^{4}u+ k f(u),&x\in \mathbb{R}^{3}, \\ -\Delta \phi =u^{2},&x\in \mathbb{R}^{3}. \end{cases} $$ By nodal Nehari manifold method, for each b > 0 $b>0$ , we obtain a least energy nodal solution u b $u_{b}$ and a ground-state solution v b $v_{b}$ to this problem when k ≫ 1 $k\gg1$ , where the nonlinear function f ∈ C ( R , R ) $f\in C(\mathbb{R},\mathbb{R})$ . We also give an analysis on the behavior of u b $u_{b}$ as the parameter b → 0 $b\to 0$ .http://link.springer.com/article/10.1186/s13661-020-01421-5Kirchhoff–Schrödinger–Poisson systemsNodal solutionGround state solutionNehari manifold
spellingShingle Chungen Liu
Hua-Bo Zhang
Ground state and nodal solutions for critical Kirchhoff–Schrödinger–Poisson systems with an asymptotically 3-linear growth nonlinearity
Boundary Value Problems
Kirchhoff–Schrödinger–Poisson systems
Nodal solution
Ground state solution
Nehari manifold
title Ground state and nodal solutions for critical Kirchhoff–Schrödinger–Poisson systems with an asymptotically 3-linear growth nonlinearity
title_full Ground state and nodal solutions for critical Kirchhoff–Schrödinger–Poisson systems with an asymptotically 3-linear growth nonlinearity
title_fullStr Ground state and nodal solutions for critical Kirchhoff–Schrödinger–Poisson systems with an asymptotically 3-linear growth nonlinearity
title_full_unstemmed Ground state and nodal solutions for critical Kirchhoff–Schrödinger–Poisson systems with an asymptotically 3-linear growth nonlinearity
title_short Ground state and nodal solutions for critical Kirchhoff–Schrödinger–Poisson systems with an asymptotically 3-linear growth nonlinearity
title_sort ground state and nodal solutions for critical kirchhoff schrodinger poisson systems with an asymptotically 3 linear growth nonlinearity
topic Kirchhoff–Schrödinger–Poisson systems
Nodal solution
Ground state solution
Nehari manifold
url http://link.springer.com/article/10.1186/s13661-020-01421-5
work_keys_str_mv AT chungenliu groundstateandnodalsolutionsforcriticalkirchhoffschrodingerpoissonsystemswithanasymptotically3lineargrowthnonlinearity
AT huabozhang groundstateandnodalsolutionsforcriticalkirchhoffschrodingerpoissonsystemswithanasymptotically3lineargrowthnonlinearity