Fabrication of pillared PLGA microvessel scaffold using femtosecond laser ablation
Hsiao-Wei Wang1, Chung-Wei Cheng2, Ching-Wen Li3, Han-Wei Chang4, Ping-Han Wu2, Gou-Jen Wang 1Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung, Taiwan, 2Laser Application Technology Center, Industrial Technology Research Institute, Tainan County, T...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Dove Medical Press
2012-04-01
|
Series: | International Journal of Nanomedicine |
Online Access: | http://www.dovepress.com/fabrication-of-pillared-plga-microvessel-scaffold-using-femtosecond-la-a9649 |
_version_ | 1818427795169083392 |
---|---|
author | Wang GJ Wu PH Chang HW Li CW Cheng CW Wang HW |
author_facet | Wang GJ Wu PH Chang HW Li CW Cheng CW Wang HW |
author_sort | Wang GJ |
collection | DOAJ |
description | Hsiao-Wei Wang1, Chung-Wei Cheng2, Ching-Wen Li3, Han-Wei Chang4, Ping-Han Wu2, Gou-Jen Wang 1Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung, Taiwan, 2Laser Application Technology Center, Industrial Technology Research Institute, Tainan County, Taiwan, 3Department of Mechanical Engineering, 4Department of Chemical Engineering, National Chung Hsing University, Taichung, Taiwan, People’s Republic of ChinaAbstract: One of the persistent challenges confronting tissue engineering is the lack of intrinsic microvessels for the transportation of nutrients and metabolites. An artificial microvascular system could be a feasible solution to this problem. In this study, the femtosecond laser ablation technique was implemented for the fabrication of pillared microvessel scaffolds of polylactic-co-glycolic acid (PLGA). This novel scaffold facilitates implementation of the conventional cell seeding process. The progress of cell growth can be observed in vitro by optical microscopy. The problems of becoming milky or completely opaque with the conventional PLGA scaffold after cell seeding can be resolved. In this study, PLGA microvessel scaffolds consisting of 47 µm × 80 µm pillared branches were produced. Results of cell culturing of bovine endothelial cells demonstrate that the cells adhere well and grow to surround each branch of the proposed pillared microvessel networks.Keywords: femtosecond laser ablation, pillared microvessel scaffold, polylactic-co-glycolic acid, bovine endothelial cells |
first_indexed | 2024-12-14T14:51:24Z |
format | Article |
id | doaj.art-582d898046714e1d8a5be6a2197a2afc |
institution | Directory Open Access Journal |
issn | 1176-9114 1178-2013 |
language | English |
last_indexed | 2024-12-14T14:51:24Z |
publishDate | 2012-04-01 |
publisher | Dove Medical Press |
record_format | Article |
series | International Journal of Nanomedicine |
spelling | doaj.art-582d898046714e1d8a5be6a2197a2afc2022-12-21T22:57:07ZengDove Medical PressInternational Journal of Nanomedicine1176-91141178-20132012-04-012012default18651873Fabrication of pillared PLGA microvessel scaffold using femtosecond laser ablationWang GJWu PHChang HWLi CWCheng CWWang HWHsiao-Wei Wang1, Chung-Wei Cheng2, Ching-Wen Li3, Han-Wei Chang4, Ping-Han Wu2, Gou-Jen Wang 1Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung, Taiwan, 2Laser Application Technology Center, Industrial Technology Research Institute, Tainan County, Taiwan, 3Department of Mechanical Engineering, 4Department of Chemical Engineering, National Chung Hsing University, Taichung, Taiwan, People’s Republic of ChinaAbstract: One of the persistent challenges confronting tissue engineering is the lack of intrinsic microvessels for the transportation of nutrients and metabolites. An artificial microvascular system could be a feasible solution to this problem. In this study, the femtosecond laser ablation technique was implemented for the fabrication of pillared microvessel scaffolds of polylactic-co-glycolic acid (PLGA). This novel scaffold facilitates implementation of the conventional cell seeding process. The progress of cell growth can be observed in vitro by optical microscopy. The problems of becoming milky or completely opaque with the conventional PLGA scaffold after cell seeding can be resolved. In this study, PLGA microvessel scaffolds consisting of 47 µm × 80 µm pillared branches were produced. Results of cell culturing of bovine endothelial cells demonstrate that the cells adhere well and grow to surround each branch of the proposed pillared microvessel networks.Keywords: femtosecond laser ablation, pillared microvessel scaffold, polylactic-co-glycolic acid, bovine endothelial cellshttp://www.dovepress.com/fabrication-of-pillared-plga-microvessel-scaffold-using-femtosecond-la-a9649 |
spellingShingle | Wang GJ Wu PH Chang HW Li CW Cheng CW Wang HW Fabrication of pillared PLGA microvessel scaffold using femtosecond laser ablation International Journal of Nanomedicine |
title | Fabrication of pillared PLGA microvessel scaffold using femtosecond laser ablation |
title_full | Fabrication of pillared PLGA microvessel scaffold using femtosecond laser ablation |
title_fullStr | Fabrication of pillared PLGA microvessel scaffold using femtosecond laser ablation |
title_full_unstemmed | Fabrication of pillared PLGA microvessel scaffold using femtosecond laser ablation |
title_short | Fabrication of pillared PLGA microvessel scaffold using femtosecond laser ablation |
title_sort | fabrication of pillared plga microvessel scaffold using femtosecond laser ablation |
url | http://www.dovepress.com/fabrication-of-pillared-plga-microvessel-scaffold-using-femtosecond-la-a9649 |
work_keys_str_mv | AT wanggj fabricationofpillaredplgamicrovesselscaffoldusingfemtosecondlaserablation AT wuph fabricationofpillaredplgamicrovesselscaffoldusingfemtosecondlaserablation AT changhw fabricationofpillaredplgamicrovesselscaffoldusingfemtosecondlaserablation AT licw fabricationofpillaredplgamicrovesselscaffoldusingfemtosecondlaserablation AT chengcw fabricationofpillaredplgamicrovesselscaffoldusingfemtosecondlaserablation AT wanghw fabricationofpillaredplgamicrovesselscaffoldusingfemtosecondlaserablation |