Mechanical Analysis of Flexible Riser with Carbon Fiber Composite Tension Armor

As oil and gas exploration moves to deeper areas of the ocean, the weight of flexible risers becomes an important factor in design. To reduce the weight of flexible risers and ease the load on the offshore platform, this paper present a cylindrical tensile armor layer made of composite materials tha...

Full description

Bibliographic Details
Main Authors: Haichen Zhang, Lili Tong, Michael Anim Addo
Format: Article
Language:English
Published: MDPI AG 2020-12-01
Series:Journal of Composites Science
Subjects:
Online Access:https://www.mdpi.com/2504-477X/5/1/3
Description
Summary:As oil and gas exploration moves to deeper areas of the ocean, the weight of flexible risers becomes an important factor in design. To reduce the weight of flexible risers and ease the load on the offshore platform, this paper present a cylindrical tensile armor layer made of composite materials that can replace the helical tensile armor layer made of carbon steel. The ACP (pre) of the workbench is used to model the composite tension armor. Firstly, the composite lamination of the tensile armor is discussed. Then, considering the progressive damage theory of composite material, the whole flexible riser is analyzed mechanically and compared with the original flexible riser. The weight of the flexible riser decreases by 9.73 kg/m, and the axial tensile stiffness decreases by 17.1%, while the axial tensile strength increases by 130%. At the same time, the flexible riser can meet the design strength requirements of torsion and bending.
ISSN:2504-477X