On Another Class of Strongly Perfect Graphs

For a commutative ring <i>R</i> with unity, the associate ring graph, denoted by <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>A</mi><mi>G</mi><mo stretchy=&quo...

Full description

Bibliographic Details
Main Authors: Neha Kansal, Bableen Kaur, Pravin Garg, Deepa Sinha
Format: Article
Language:English
Published: MDPI AG 2022-06-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/10/12/2014
_version_ 1797484739062398976
author Neha Kansal
Bableen Kaur
Pravin Garg
Deepa Sinha
author_facet Neha Kansal
Bableen Kaur
Pravin Garg
Deepa Sinha
author_sort Neha Kansal
collection DOAJ
description For a commutative ring <i>R</i> with unity, the associate ring graph, denoted by <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>A</mi><mi>G</mi><mo stretchy="false">(</mo><mi>R</mi><mo stretchy="false">)</mo></mrow></semantics></math></inline-formula>, is a simple graph with vertices as nonzero elements of <i>R</i> and two distinct vertices are adjacent if they are associates. The graph <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>A</mi><mi>G</mi><mo stretchy="false">(</mo><mi>R</mi><mo stretchy="false">)</mo></mrow></semantics></math></inline-formula> contains components equal in number to the number of distinct orbits, except for the orbit of an element 0. Moreover, each component is a complete graph. An important finding is that this is a class of strongly perfect graphs. In this article we describe the structure of the associate ring graph of the ring of integers modulo <i>n</i>, denoted by <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>A</mi><mi>G</mi><mo stretchy="false">(</mo><msub><mi mathvariant="double-struck">Z</mi><mi>n</mi></msub><mo stretchy="false">)</mo></mrow></semantics></math></inline-formula>. We carried out computer experiments and provide a program for the same. We further characterize cases in which <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>A</mi><mi>G</mi><mo stretchy="false">(</mo><msub><mi mathvariant="double-struck">Z</mi><mi>n</mi></msub><mo stretchy="false">)</mo></mrow></semantics></math></inline-formula>, its complement <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mover><mrow><mi>A</mi><mi>G</mi><mo stretchy="false">(</mo><msub><mi mathvariant="double-struck">Z</mi><mi>n</mi></msub><mo stretchy="false">)</mo></mrow><mo>¯</mo></mover></semantics></math></inline-formula>, and their line graphs are planar, ring graphs, and outerplanar. We also discuss the properties of the associate ring graph of a commutative ring <i>R</i> with unity.
first_indexed 2024-03-09T23:08:45Z
format Article
id doaj.art-583adfd3924c4408a326652caf3fbe3c
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-09T23:08:45Z
publishDate 2022-06-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-583adfd3924c4408a326652caf3fbe3c2023-11-23T17:48:19ZengMDPI AGMathematics2227-73902022-06-011012201410.3390/math10122014On Another Class of Strongly Perfect GraphsNeha Kansal0Bableen Kaur1Pravin Garg2Deepa Sinha3Department of Mathematics, University of Rajasthan, Jaipur 302004, IndiaDepartment of Mathematics, South Asian University, New Delhi 110021, IndiaDepartment of Mathematics, University of Rajasthan, Jaipur 302004, IndiaDepartment of Mathematics, South Asian University, New Delhi 110021, IndiaFor a commutative ring <i>R</i> with unity, the associate ring graph, denoted by <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>A</mi><mi>G</mi><mo stretchy="false">(</mo><mi>R</mi><mo stretchy="false">)</mo></mrow></semantics></math></inline-formula>, is a simple graph with vertices as nonzero elements of <i>R</i> and two distinct vertices are adjacent if they are associates. The graph <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>A</mi><mi>G</mi><mo stretchy="false">(</mo><mi>R</mi><mo stretchy="false">)</mo></mrow></semantics></math></inline-formula> contains components equal in number to the number of distinct orbits, except for the orbit of an element 0. Moreover, each component is a complete graph. An important finding is that this is a class of strongly perfect graphs. In this article we describe the structure of the associate ring graph of the ring of integers modulo <i>n</i>, denoted by <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>A</mi><mi>G</mi><mo stretchy="false">(</mo><msub><mi mathvariant="double-struck">Z</mi><mi>n</mi></msub><mo stretchy="false">)</mo></mrow></semantics></math></inline-formula>. We carried out computer experiments and provide a program for the same. We further characterize cases in which <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>A</mi><mi>G</mi><mo stretchy="false">(</mo><msub><mi mathvariant="double-struck">Z</mi><mi>n</mi></msub><mo stretchy="false">)</mo></mrow></semantics></math></inline-formula>, its complement <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mover><mrow><mi>A</mi><mi>G</mi><mo stretchy="false">(</mo><msub><mi mathvariant="double-struck">Z</mi><mi>n</mi></msub><mo stretchy="false">)</mo></mrow><mo>¯</mo></mover></semantics></math></inline-formula>, and their line graphs are planar, ring graphs, and outerplanar. We also discuss the properties of the associate ring graph of a commutative ring <i>R</i> with unity.https://www.mdpi.com/2227-7390/10/12/2014associate ring graphring graphline graphplanarouterplanar
spellingShingle Neha Kansal
Bableen Kaur
Pravin Garg
Deepa Sinha
On Another Class of Strongly Perfect Graphs
Mathematics
associate ring graph
ring graph
line graph
planar
outerplanar
title On Another Class of Strongly Perfect Graphs
title_full On Another Class of Strongly Perfect Graphs
title_fullStr On Another Class of Strongly Perfect Graphs
title_full_unstemmed On Another Class of Strongly Perfect Graphs
title_short On Another Class of Strongly Perfect Graphs
title_sort on another class of strongly perfect graphs
topic associate ring graph
ring graph
line graph
planar
outerplanar
url https://www.mdpi.com/2227-7390/10/12/2014
work_keys_str_mv AT nehakansal onanotherclassofstronglyperfectgraphs
AT bableenkaur onanotherclassofstronglyperfectgraphs
AT pravingarg onanotherclassofstronglyperfectgraphs
AT deepasinha onanotherclassofstronglyperfectgraphs