Hecke Groups, Dessins d'Enfants and the Archimedean Solids

Grothendieck's dessins d'enfants arise with ever-increasing frequency in many areas of 21st century mathematical physics. In this paper, we review the connections between dessins and the theory of Hecke groups. Focussing on the restricted class of highly symmetric dessins corresponding to...

Full description

Bibliographic Details
Main Authors: Yang-Hui eHe, James eRead
Format: Article
Language:English
Published: Frontiers Media S.A. 2015-12-01
Series:Frontiers in Physics
Subjects:
Online Access:http://journal.frontiersin.org/Journal/10.3389/fphy.2015.00091/full
_version_ 1818995929404932096
author Yang-Hui eHe
Yang-Hui eHe
James eRead
author_facet Yang-Hui eHe
Yang-Hui eHe
James eRead
author_sort Yang-Hui eHe
collection DOAJ
description Grothendieck's dessins d'enfants arise with ever-increasing frequency in many areas of 21st century mathematical physics. In this paper, we review the connections between dessins and the theory of Hecke groups. Focussing on the restricted class of highly symmetric dessins corresponding to the so-called Archimedean solids, we apply this theory in order to provide a means of computing representatives of the associated conjugacy classes of Hecke subgroups in each case. The aim of this paper is to demonstrate that dessins arising in mathematical physics can point to new and hitherto unexpected directions for further research. In addition, given the particular ubiquity of many of the dessins corresponding to the Archimedean solids, the hope is that the computational results of this paper will prove useful in the further study of these objects in mathematical physics contexts.
first_indexed 2024-12-20T21:21:39Z
format Article
id doaj.art-5845224afd0c4b8e8b1eaa988d9e78ab
institution Directory Open Access Journal
issn 2296-424X
language English
last_indexed 2024-12-20T21:21:39Z
publishDate 2015-12-01
publisher Frontiers Media S.A.
record_format Article
series Frontiers in Physics
spelling doaj.art-5845224afd0c4b8e8b1eaa988d9e78ab2022-12-21T19:26:15ZengFrontiers Media S.A.Frontiers in Physics2296-424X2015-12-01310.3389/fphy.2015.00091159335Hecke Groups, Dessins d'Enfants and the Archimedean SolidsYang-Hui eHe0Yang-Hui eHe1James eRead2City University, London; Nankai University, China and University of OxfordUniversity of OxfordUniversity of OxfordGrothendieck's dessins d'enfants arise with ever-increasing frequency in many areas of 21st century mathematical physics. In this paper, we review the connections between dessins and the theory of Hecke groups. Focussing on the restricted class of highly symmetric dessins corresponding to the so-called Archimedean solids, we apply this theory in order to provide a means of computing representatives of the associated conjugacy classes of Hecke subgroups in each case. The aim of this paper is to demonstrate that dessins arising in mathematical physics can point to new and hitherto unexpected directions for further research. In addition, given the particular ubiquity of many of the dessins corresponding to the Archimedean solids, the hope is that the computational results of this paper will prove useful in the further study of these objects in mathematical physics contexts.http://journal.frontiersin.org/Journal/10.3389/fphy.2015.00091/fullArchimedean solidsHecke groupsPlatonic solidsDessins d'enfantsBelyi maps
spellingShingle Yang-Hui eHe
Yang-Hui eHe
James eRead
Hecke Groups, Dessins d'Enfants and the Archimedean Solids
Frontiers in Physics
Archimedean solids
Hecke groups
Platonic solids
Dessins d'enfants
Belyi maps
title Hecke Groups, Dessins d'Enfants and the Archimedean Solids
title_full Hecke Groups, Dessins d'Enfants and the Archimedean Solids
title_fullStr Hecke Groups, Dessins d'Enfants and the Archimedean Solids
title_full_unstemmed Hecke Groups, Dessins d'Enfants and the Archimedean Solids
title_short Hecke Groups, Dessins d'Enfants and the Archimedean Solids
title_sort hecke groups dessins d 39 enfants and the archimedean solids
topic Archimedean solids
Hecke groups
Platonic solids
Dessins d'enfants
Belyi maps
url http://journal.frontiersin.org/Journal/10.3389/fphy.2015.00091/full
work_keys_str_mv AT yanghuiehe heckegroupsdessinsd39enfantsandthearchimedeansolids
AT yanghuiehe heckegroupsdessinsd39enfantsandthearchimedeansolids
AT jameseread heckegroupsdessinsd39enfantsandthearchimedeansolids