A study on tolerance design of machine tool components based on shape generation motions (Theoretical analysis considering rotational table positions)

The kinematic motion deviations of the five-axis machining centers are deeply influenced by the geometric deviations of the components, such as guide-ways and bearings. A systematic design method is required for specifying suitable geometric tolerances of the guide-ways, in order to improve the kine...

Full description

Bibliographic Details
Main Authors: Naoki SATONAKA, Ryo TAKEMATSU, Nobuhiro SUGIMURA, Koji IWAMURA, Yoshitaka TANIMIZU
Format: Article
Language:Japanese
Published: The Japan Society of Mechanical Engineers 2017-04-01
Series:Nihon Kikai Gakkai ronbunshu
Subjects:
Online Access:https://www.jstage.jst.go.jp/article/transjsme/83/848/83_16-00561/_pdf/-char/en
Description
Summary:The kinematic motion deviations of the five-axis machining centers are deeply influenced by the geometric deviations of the components, such as guide-ways and bearings. A systematic design method is required for specifying suitable geometric tolerances of the guide-ways, in order to improve the kinematic motion deviations of five-axis machining centers. The objective of the present research is to establish a computer-aided design system for specifying a suitable set of the geometric tolerances of the guide-ways considering the trade-off between the requirements on the kinematic motion deviations and the ease of the manufacturing processes. A mathematical model was proposed in the previous papers to represent the standard deviations of the shape generation motions, based on the tolerance values of the guide-ways of the five-axis machining centers. A systematic method is proposed here considering the rotational table positions to determine a suitable set of the tolerance values of all the guide-ways under the constraints on the kinematic motion deviations between the tools and the workpieces. The method is applied to some design problems of the geometric tolerances of the guide-ways included in the five-axis machining centers.
ISSN:2187-9761