Tensor Network Renormalization with Fusion Charges—Applications to 3D Lattice Gauge Theory

Tensor network methods are powerful and efficient tools for studying the properties and dynamics of statistical and quantum systems, in particular in one and two dimensions. In recent years, these methods have been applied to lattice gauge theories, yet these theories remain a challenge in <inlin...

Full description

Bibliographic Details
Main Authors: William J. Cunningham, Bianca Dittrich, Sebastian Steinhaus
Format: Article
Language:English
Published: MDPI AG 2020-07-01
Series:Universe
Subjects:
Online Access:https://www.mdpi.com/2218-1997/6/7/97
_version_ 1797562617505513472
author William J. Cunningham
Bianca Dittrich
Sebastian Steinhaus
author_facet William J. Cunningham
Bianca Dittrich
Sebastian Steinhaus
author_sort William J. Cunningham
collection DOAJ
description Tensor network methods are powerful and efficient tools for studying the properties and dynamics of statistical and quantum systems, in particular in one and two dimensions. In recent years, these methods have been applied to lattice gauge theories, yet these theories remain a challenge in <inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <mn>2</mn> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> </semantics> </math> </inline-formula> dimensions. In this article, we present a new (decorated) tensor network algorithm, in which the tensors encode the lattice gauge amplitude expressed in the fusion basis. This has several advantages—firstly, the fusion basis does diagonalize operators measuring the magnetic fluxes and electric charges associated to a hierarchical set of regions. The algorithm allows therefore a direct access to these observables. Secondly the fusion basis is, as opposed to the previously employed spin network basis, stable under coarse-graining. Thirdly, due to the hierarchical structure of the fusion basis, the algorithm does implement predefined disentanglers. We apply this new algorithm to lattice gauge theories defined for the quantum group <inline-formula> <math display="inline"> <semantics> <mrow> <mi>SU</mi> <msub> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> <mi mathvariant="normal">k</mi> </msub> </mrow> </semantics> </math> </inline-formula> and identify a weak and a strong coupling phase for various levels <inline-formula> <math display="inline"> <semantics> <mi mathvariant="normal">k</mi> </semantics> </math> </inline-formula>. As we increase the level <inline-formula> <math display="inline"> <semantics> <mi mathvariant="normal">k</mi> </semantics> </math> </inline-formula>, the critical coupling <inline-formula> <math display="inline"> <semantics> <msub> <mi>g</mi> <mi>c</mi> </msub> </semantics> </math> </inline-formula> decreases linearly, suggesting the absence of a deconfining phase for the continuous group <inline-formula> <math display="inline"> <semantics> <mrow> <mi>SU</mi> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </semantics> </math> </inline-formula>. Moreover, we illustrate the scaling behaviour of the Wilson loops in the two phases.
first_indexed 2024-03-10T18:31:29Z
format Article
id doaj.art-584ff20944064f60a5ec8b20a0765f39
institution Directory Open Access Journal
issn 2218-1997
language English
last_indexed 2024-03-10T18:31:29Z
publishDate 2020-07-01
publisher MDPI AG
record_format Article
series Universe
spelling doaj.art-584ff20944064f60a5ec8b20a0765f392023-11-20T06:33:10ZengMDPI AGUniverse2218-19972020-07-01679710.3390/universe6070097Tensor Network Renormalization with Fusion Charges—Applications to 3D Lattice Gauge TheoryWilliam J. Cunningham0Bianca Dittrich1Sebastian Steinhaus2Perimeter Institute for Theoretical Physics, 31 Caroline Street North, Waterloo, ON N2L 2Y5, CanadaPerimeter Institute for Theoretical Physics, 31 Caroline Street North, Waterloo, ON N2L 2Y5, CanadaTheoretisch-Physikalisches Institut, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, 07743 Jena, GermanyTensor network methods are powerful and efficient tools for studying the properties and dynamics of statistical and quantum systems, in particular in one and two dimensions. In recent years, these methods have been applied to lattice gauge theories, yet these theories remain a challenge in <inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <mn>2</mn> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> </semantics> </math> </inline-formula> dimensions. In this article, we present a new (decorated) tensor network algorithm, in which the tensors encode the lattice gauge amplitude expressed in the fusion basis. This has several advantages—firstly, the fusion basis does diagonalize operators measuring the magnetic fluxes and electric charges associated to a hierarchical set of regions. The algorithm allows therefore a direct access to these observables. Secondly the fusion basis is, as opposed to the previously employed spin network basis, stable under coarse-graining. Thirdly, due to the hierarchical structure of the fusion basis, the algorithm does implement predefined disentanglers. We apply this new algorithm to lattice gauge theories defined for the quantum group <inline-formula> <math display="inline"> <semantics> <mrow> <mi>SU</mi> <msub> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> <mi mathvariant="normal">k</mi> </msub> </mrow> </semantics> </math> </inline-formula> and identify a weak and a strong coupling phase for various levels <inline-formula> <math display="inline"> <semantics> <mi mathvariant="normal">k</mi> </semantics> </math> </inline-formula>. As we increase the level <inline-formula> <math display="inline"> <semantics> <mi mathvariant="normal">k</mi> </semantics> </math> </inline-formula>, the critical coupling <inline-formula> <math display="inline"> <semantics> <msub> <mi>g</mi> <mi>c</mi> </msub> </semantics> </math> </inline-formula> decreases linearly, suggesting the absence of a deconfining phase for the continuous group <inline-formula> <math display="inline"> <semantics> <mrow> <mi>SU</mi> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </semantics> </math> </inline-formula>. Moreover, we illustrate the scaling behaviour of the Wilson loops in the two phases.https://www.mdpi.com/2218-1997/6/7/97tensor network renormalizationlattice gauge theoryquantum groupsquantum gravity
spellingShingle William J. Cunningham
Bianca Dittrich
Sebastian Steinhaus
Tensor Network Renormalization with Fusion Charges—Applications to 3D Lattice Gauge Theory
Universe
tensor network renormalization
lattice gauge theory
quantum groups
quantum gravity
title Tensor Network Renormalization with Fusion Charges—Applications to 3D Lattice Gauge Theory
title_full Tensor Network Renormalization with Fusion Charges—Applications to 3D Lattice Gauge Theory
title_fullStr Tensor Network Renormalization with Fusion Charges—Applications to 3D Lattice Gauge Theory
title_full_unstemmed Tensor Network Renormalization with Fusion Charges—Applications to 3D Lattice Gauge Theory
title_short Tensor Network Renormalization with Fusion Charges—Applications to 3D Lattice Gauge Theory
title_sort tensor network renormalization with fusion charges applications to 3d lattice gauge theory
topic tensor network renormalization
lattice gauge theory
quantum groups
quantum gravity
url https://www.mdpi.com/2218-1997/6/7/97
work_keys_str_mv AT williamjcunningham tensornetworkrenormalizationwithfusionchargesapplicationsto3dlatticegaugetheory
AT biancadittrich tensornetworkrenormalizationwithfusionchargesapplicationsto3dlatticegaugetheory
AT sebastiansteinhaus tensornetworkrenormalizationwithfusionchargesapplicationsto3dlatticegaugetheory