A framework for quantitative in situ evaluation of coupled substitutions between H<sup>+</sup> and trace elements in natural rutile

<p>The coupling behaviour of H<span class="inline-formula"><sup>+</sup></span> and trace elements in rutile has been studied using in situ polarised Fourier transform infrared (FTIR) spectroscopy and laser ablation inductively coupled plasma mass spectrometry...

Full description

Bibliographic Details
Main Authors: M. Lueder, R. Tamblyn, J. Hermann
Format: Article
Language:English
Published: Copernicus Publications 2023-04-01
Series:European Journal of Mineralogy
Online Access:https://ejm.copernicus.org/articles/35/243/2023/ejm-35-243-2023.pdf
_version_ 1797852042369171456
author M. Lueder
R. Tamblyn
J. Hermann
author_facet M. Lueder
R. Tamblyn
J. Hermann
author_sort M. Lueder
collection DOAJ
description <p>The coupling behaviour of H<span class="inline-formula"><sup>+</sup></span> and trace elements in rutile has been studied using in situ polarised Fourier transform infrared (FTIR) spectroscopy and laser ablation inductively coupled plasma mass spectrometry (LA–ICP–MS) analysis. H<span class="inline-formula"><sub>2</sub></span>O contents in rutile can be precisely and accurately quantified from polarised FTIR measurements on single grains in situ. The benefits of this novel approach compared to traditional quantification methods are the preservation of textural context and heterogeneities of water in rutile. Rutile from six different geological environments shows H<span class="inline-formula"><sub>2</sub></span>O contents varying between <span class="inline-formula">∼</span> 50–2200 <span class="inline-formula">µ</span>g g<span class="inline-formula"><sup>−1</sup></span>, with large intra-grain variabilities for vein-related samples with H<span class="inline-formula"><sub>2</sub></span>O contents between <span class="inline-formula">∼</span> 500 and <span class="inline-formula">∼</span> 2200 <span class="inline-formula">µ</span>g g<span class="inline-formula"><sup>−1</sup></span>. From FTIR peak deconvolutions, six distinct OH absorption bands have been identified at <span class="inline-formula">∼</span> 3280, <span class="inline-formula">∼</span> 3295, <span class="inline-formula">∼</span> 3324, <span class="inline-formula">∼</span> 3345, <span class="inline-formula">∼</span> 3370, and <span class="inline-formula">∼</span> 3390 cm<span class="inline-formula"><sup>−1</sup></span> that can be related to coupled substitutions with Ti<span class="inline-formula"><sup>3+</sup></span>, Fe<span class="inline-formula"><sup>3+</sup></span>, Al<span class="inline-formula"><sup>3+</sup></span>, Mg<span class="inline-formula"><sup>2+</sup></span>, Fe<span class="inline-formula"><sup>2+</sup></span>, and Cr<span class="inline-formula"><sup>2+</sup></span>, respectively. Rutile from eclogite samples displays the dominant exchange reactions of Ti<span class="inline-formula"><sup>4+</sup></span> <span class="inline-formula">→</span> Ti<span class="inline-formula"><sup>3+</sup></span>, Fe<span class="inline-formula"><sup>3+</sup></span> <span class="inline-formula">+</span> H<span class="inline-formula"><sup>+</sup></span>, whereas rutile in a whiteschist shows mainly Ti<span class="inline-formula"><sup>4+</sup></span> <span class="inline-formula">→</span> Al<span class="inline-formula"><sup>3+</sup></span> <span class="inline-formula">+</span> H<span class="inline-formula"><sup>+</sup></span>. Trace-element-dependent H<span class="inline-formula"><sup>+</sup></span> contents combined with LA–ICP–MS trace-element data reveal the significant importance of H<span class="inline-formula"><sup>+</sup></span> for charge balance and trace-element coupling with trivalent cations. Trivalent cations are the most abundant impurities in rutile, and there is not enough H<span class="inline-formula"><sup>+</sup></span> and pentavalent cations like Nb and Ta for a complete charge balance, indicating that additionally oxygen vacancies are needed for charge balancing trivalent cations. Valance states of multivalent trace elements can be inferred from deconvoluted FTIR spectra. Titanium occurs at 0.03 ‰–7.6 ‰ as Ti<span class="inline-formula"><sup>3+</sup></span>, Fe, and Cr are preferentially incorporated as Fe<span class="inline-formula"><sup>3+</sup></span> and Cr<span class="inline-formula"><sup>3+</sup></span> over Fe<span class="inline-formula"><sup>2+</sup></span> and Cr<span class="inline-formula"><sup>2+</sup></span>, and V most likely occurs as V<span class="inline-formula"><sup>4+</sup></span>. This opens the possibility of H<span class="inline-formula"><sup>+</sup></span> in rutile as a potential indicator of oxygen fugacity of metamorphic and subduction-zone fluids, with the ratio between Ti<span class="inline-formula"><sup>3+</sup></span>- and Fe<span class="inline-formula"><sup>3+</sup></span>-related H<span class="inline-formula"><sup>+</sup></span> contents being most promising.</p>
first_indexed 2024-04-09T19:27:37Z
format Article
id doaj.art-5855a2e64fe94f2d856044433dec2247
institution Directory Open Access Journal
issn 0935-1221
1617-4011
language English
last_indexed 2024-04-09T19:27:37Z
publishDate 2023-04-01
publisher Copernicus Publications
record_format Article
series European Journal of Mineralogy
spelling doaj.art-5855a2e64fe94f2d856044433dec22472023-04-05T05:32:25ZengCopernicus PublicationsEuropean Journal of Mineralogy0935-12211617-40112023-04-013524326510.5194/ejm-35-243-2023A framework for quantitative in situ evaluation of coupled substitutions between H<sup>+</sup> and trace elements in natural rutileM. LuederR. TamblynJ. Hermann<p>The coupling behaviour of H<span class="inline-formula"><sup>+</sup></span> and trace elements in rutile has been studied using in situ polarised Fourier transform infrared (FTIR) spectroscopy and laser ablation inductively coupled plasma mass spectrometry (LA–ICP–MS) analysis. H<span class="inline-formula"><sub>2</sub></span>O contents in rutile can be precisely and accurately quantified from polarised FTIR measurements on single grains in situ. The benefits of this novel approach compared to traditional quantification methods are the preservation of textural context and heterogeneities of water in rutile. Rutile from six different geological environments shows H<span class="inline-formula"><sub>2</sub></span>O contents varying between <span class="inline-formula">∼</span> 50–2200 <span class="inline-formula">µ</span>g g<span class="inline-formula"><sup>−1</sup></span>, with large intra-grain variabilities for vein-related samples with H<span class="inline-formula"><sub>2</sub></span>O contents between <span class="inline-formula">∼</span> 500 and <span class="inline-formula">∼</span> 2200 <span class="inline-formula">µ</span>g g<span class="inline-formula"><sup>−1</sup></span>. From FTIR peak deconvolutions, six distinct OH absorption bands have been identified at <span class="inline-formula">∼</span> 3280, <span class="inline-formula">∼</span> 3295, <span class="inline-formula">∼</span> 3324, <span class="inline-formula">∼</span> 3345, <span class="inline-formula">∼</span> 3370, and <span class="inline-formula">∼</span> 3390 cm<span class="inline-formula"><sup>−1</sup></span> that can be related to coupled substitutions with Ti<span class="inline-formula"><sup>3+</sup></span>, Fe<span class="inline-formula"><sup>3+</sup></span>, Al<span class="inline-formula"><sup>3+</sup></span>, Mg<span class="inline-formula"><sup>2+</sup></span>, Fe<span class="inline-formula"><sup>2+</sup></span>, and Cr<span class="inline-formula"><sup>2+</sup></span>, respectively. Rutile from eclogite samples displays the dominant exchange reactions of Ti<span class="inline-formula"><sup>4+</sup></span> <span class="inline-formula">→</span> Ti<span class="inline-formula"><sup>3+</sup></span>, Fe<span class="inline-formula"><sup>3+</sup></span> <span class="inline-formula">+</span> H<span class="inline-formula"><sup>+</sup></span>, whereas rutile in a whiteschist shows mainly Ti<span class="inline-formula"><sup>4+</sup></span> <span class="inline-formula">→</span> Al<span class="inline-formula"><sup>3+</sup></span> <span class="inline-formula">+</span> H<span class="inline-formula"><sup>+</sup></span>. Trace-element-dependent H<span class="inline-formula"><sup>+</sup></span> contents combined with LA–ICP–MS trace-element data reveal the significant importance of H<span class="inline-formula"><sup>+</sup></span> for charge balance and trace-element coupling with trivalent cations. Trivalent cations are the most abundant impurities in rutile, and there is not enough H<span class="inline-formula"><sup>+</sup></span> and pentavalent cations like Nb and Ta for a complete charge balance, indicating that additionally oxygen vacancies are needed for charge balancing trivalent cations. Valance states of multivalent trace elements can be inferred from deconvoluted FTIR spectra. Titanium occurs at 0.03 ‰–7.6 ‰ as Ti<span class="inline-formula"><sup>3+</sup></span>, Fe, and Cr are preferentially incorporated as Fe<span class="inline-formula"><sup>3+</sup></span> and Cr<span class="inline-formula"><sup>3+</sup></span> over Fe<span class="inline-formula"><sup>2+</sup></span> and Cr<span class="inline-formula"><sup>2+</sup></span>, and V most likely occurs as V<span class="inline-formula"><sup>4+</sup></span>. This opens the possibility of H<span class="inline-formula"><sup>+</sup></span> in rutile as a potential indicator of oxygen fugacity of metamorphic and subduction-zone fluids, with the ratio between Ti<span class="inline-formula"><sup>3+</sup></span>- and Fe<span class="inline-formula"><sup>3+</sup></span>-related H<span class="inline-formula"><sup>+</sup></span> contents being most promising.</p>https://ejm.copernicus.org/articles/35/243/2023/ejm-35-243-2023.pdf
spellingShingle M. Lueder
R. Tamblyn
J. Hermann
A framework for quantitative in situ evaluation of coupled substitutions between H<sup>+</sup> and trace elements in natural rutile
European Journal of Mineralogy
title A framework for quantitative in situ evaluation of coupled substitutions between H<sup>+</sup> and trace elements in natural rutile
title_full A framework for quantitative in situ evaluation of coupled substitutions between H<sup>+</sup> and trace elements in natural rutile
title_fullStr A framework for quantitative in situ evaluation of coupled substitutions between H<sup>+</sup> and trace elements in natural rutile
title_full_unstemmed A framework for quantitative in situ evaluation of coupled substitutions between H<sup>+</sup> and trace elements in natural rutile
title_short A framework for quantitative in situ evaluation of coupled substitutions between H<sup>+</sup> and trace elements in natural rutile
title_sort framework for quantitative in situ evaluation of coupled substitutions between h sup sup and trace elements in natural rutile
url https://ejm.copernicus.org/articles/35/243/2023/ejm-35-243-2023.pdf
work_keys_str_mv AT mlueder aframeworkforquantitativeinsituevaluationofcoupledsubstitutionsbetweenhsupsupandtraceelementsinnaturalrutile
AT rtamblyn aframeworkforquantitativeinsituevaluationofcoupledsubstitutionsbetweenhsupsupandtraceelementsinnaturalrutile
AT jhermann aframeworkforquantitativeinsituevaluationofcoupledsubstitutionsbetweenhsupsupandtraceelementsinnaturalrutile
AT mlueder frameworkforquantitativeinsituevaluationofcoupledsubstitutionsbetweenhsupsupandtraceelementsinnaturalrutile
AT rtamblyn frameworkforquantitativeinsituevaluationofcoupledsubstitutionsbetweenhsupsupandtraceelementsinnaturalrutile
AT jhermann frameworkforquantitativeinsituevaluationofcoupledsubstitutionsbetweenhsupsupandtraceelementsinnaturalrutile