Observation of near-infrared sub-Poissonian photon emission in hexagonal boron nitride at room temperature

The generation of non-classical light states in the near-infrared (NIR) is important for a number of photonic quantum technologies. Here, we report the first experimental observation of sub-Poissonian NIR (1.24 eV) light emission from defects in a 2D hexagonal boron nitride (hBN) sheet at room tempe...

Full description

Bibliographic Details
Main Authors: Robin Camphausen, Loris Marini, Sherif Abdulkader Tawfik, Toan Trong Tran, Michael J. Ford, Stefano Palomba
Format: Article
Language:English
Published: AIP Publishing LLC 2020-07-01
Series:APL Photonics
Online Access:http://dx.doi.org/10.1063/5.0008242
Description
Summary:The generation of non-classical light states in the near-infrared (NIR) is important for a number of photonic quantum technologies. Here, we report the first experimental observation of sub-Poissonian NIR (1.24 eV) light emission from defects in a 2D hexagonal boron nitride (hBN) sheet at room temperature. Photoluminescence statistics shows g(2)(0) = 0.6, which is a signature of the quantum nature of the emission. Density functional-theory calculations, at the level of the generalized gradient approximation, for the negatively charged nitrogen anti-site lattice defects are consistent with the observed emission energy. This work demonstrates that the defects in hBN could be a promising platform for single-photon generation in the NIR.
ISSN:2378-0967