Improved Plasticity of Ti-Based Bulk Metallic Glass at Room Temperature by Electroless Thin Nickel Coating

By restricting the dilated deformation, surface modification can stimulate multiple shear banding and improve the plasticity of bulk metallic glasses (BMGs). Aimed at modifying the surface of BMGs by thin layers, a crystalline Ni coating with ultrafine grains was coated on the surface of a Ti-based...

Full description

Bibliographic Details
Main Authors: Xin Wang, Ximei Hu, Lichen Zhao, Dongxu Jiang, Peng Chen, Pengdong Wang, Zhipeng Zhang, Shuiqing Liu, Chunxiang Cui
Format: Article
Language:English
Published: MDPI AG 2017-12-01
Series:Metals
Subjects:
Online Access:https://www.mdpi.com/2075-4701/7/12/562
Description
Summary:By restricting the dilated deformation, surface modification can stimulate multiple shear banding and improve the plasticity of bulk metallic glasses (BMGs). Aimed at modifying the surface of BMGs by thin layers, a crystalline Ni coating with ultrafine grains was coated on the surface of a Ti-based BMG by electroless plating. With a thickness of about 10 μm, the prepared thin coating could effectively limit the fast propagation of primary shear bands and stimulate the nucleation of multiple shear bands. As a result, the compression plasticity of the coated Ti-based BMG was improved to about 3.7% from near 0% of the non-coated BMG. Except for a small amount of Ni coating was adhered to the BMG substrate after fracture, most of the coatings were peeled off from the surface. It can be attributed to the abnormal growth of some coarse grains/particles in local region of the coating, which induces a large tensile stress at the interface between the coating and the BMG substrate. It is suggested that, for electroless nickel plating, improving the adhesive bonding strength between the coating and the substrate has a better geometric restriction effect than simply increasing the thickness of the coating.
ISSN:2075-4701