Effects of anti-malarial prophylaxes on maternal transfer of Immunoglobulin-G (IgG) and association to immunity against Plasmodium falciparum infections among children in a Ugandan birth cohort

<h4>Background</h4> The in-utero transfer of malaria specific IgG to the fetus in Plasmodium falciparum infected pregnant women potentially plays a role in provision of immune protection against malaria in the first birth year. However, the effect of Intermittent Prophylactic Treatment i...

Full description

Bibliographic Details
Main Authors: Erick Jacob Okek, Moses Ocan, Sande James Obondo, Anthony Kiyimba, Emmanuel Arinaitwe, Joaniter Nankabirwa, Isaac Ssewanyana, Moses Robert Kamya
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2023-01-01
Series:PLoS ONE
Online Access:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9946240/?tool=EBI
Description
Summary:<h4>Background</h4> The in-utero transfer of malaria specific IgG to the fetus in Plasmodium falciparum infected pregnant women potentially plays a role in provision of immune protection against malaria in the first birth year. However, the effect of Intermittent Prophylactic Treatment in Pregnancy (IPTp) and placental malaria on the extent of in-utero antibody transfer in malaria endemic regions like Uganda remain unknown. The aim of this study was thus to establish the effect of IPTp on in-utero transfer of malaria specific IgG to the fetus and the associated immune protection against malaria in the first birth year of children born to mothers who had P. falciparum infection during pregnancy in Uganda. <h4>Methods</h4> We screened a total of 637 cord blood samples from a double blinded randomized clinical trial on Sulfadoxine-Pyrimethamine (SP) and Dihydroartemisinin-Piperaquine (DP) IPTp in a Ugandan birth cohort; study conducted from Busia, Eastern Uganda. Luminex assay was used to measure the cord levels of IgG sub-types (IgG1, IgG2, IgG3 and IgG4) against 15 different P. falciparum specific antigens, with tetanus toxoid (t.t) as a control antigen. Man-Whitney U test (non-parametric) in STATA (ver15) was used in statistical analysis of the samples. In addition, Multivariate cox regression analysis was used to determine the effect of maternal transfer of IgG on the incidence of malaria in the first birth year of children under study. <h4>Results</h4> Mothers on SP expressed higher levels of cord IgG4 against erythrocyte binding antigens (EBA140, EBA175 and EBA181) (p<0.05). Placental malaria did not affect cord levels of IgG sub-types against selected P. falciparum specific antigens (p>0.05). Children who expressed higher levels (75th percentile) of total IgG against the six key P. falciparum antigens (Pf SEA, Rh4.2, AMA1, GLURP, Etramp5Ag1 and EBA 175) had higher risk of malaria in the first birth year; AHRs: 1.092, 95% CI: 1.02–1.17 (Rh4.2); 1.32, 95% CI: 1.00–1.74 (PfSEA); 1.21, 95%CI: 0.97–1.52 (Etramp5Ag1); 1.25, 95%CI: 0.98–1.60 (AMA1); 1.83, 95%CI: 1.15–2.93 (GLURP) (GLURP), and 1.35,; 95%CI: 1.03–1.78 (EBA175). Children born to mothers categorized as poorest had the highest risk of malaria infections in the first birth year (AHR: 1.79, 95% CI: 1.31–2.4). Children born to mothers who had malaria infections during gestation had higher risk of getting malaria in the first birth year (AHR 1.30; 95%CI: 0.97–1.7). <h4>Conclusion</h4> Malaria prophylaxis in pregnant mothers using either DP or SP does not affect expression of antibodies against P. falciparum specific antigens in the cord blood. Poverty and malaria infections during pregnancy are key risk factors of malaria infections in the first birth year of growth of children. Antibodies against P. falciparum specific antigens does not protect against parasitemia and malaria infections in the first birth year of children born in malaria endemic areas.
ISSN:1932-6203