Suppressing excess noise for atmospheric continuous-variable quantum key distribution via adaptive optics approach

The excess noise inducing in the process of the quantum communication procedure is the major obstacle restricting the performance of continuous-variable quantum key distribution (CVQKD). In order to effectively suppress the excess noise through correcting the propagation-induced distortions on the q...

Full description

Bibliographic Details
Main Authors: Geng Chai, Peng Huang, Zhengwen Cao, Guihua Zeng
Format: Article
Language:English
Published: IOP Publishing 2020-01-01
Series:New Journal of Physics
Subjects:
Online Access:https://doi.org/10.1088/1367-2630/abb47c
Description
Summary:The excess noise inducing in the process of the quantum communication procedure is the major obstacle restricting the performance of continuous-variable quantum key distribution (CVQKD). In order to effectively suppress the excess noise through correcting the propagation-induced distortions on the quality of the propagated quantum signal, we propose a general scheme of suppressing excess noise for CVQKD via adaptive optics (AO) approach. The analysis shows that phase-only AO compensation exhibits excellent performance in controlling the excess noise, which is embodied in substantially extending the secure propagation distance and improving the secret key rate of the system. And thereby the development and improvement of AO has the potential advantage to break the distance constraints due to the excess noise results from propagation-dominated factors. Our scheme provides a feasible method for further implementation of practical large-scale CVQKD.
ISSN:1367-2630