Basic science of tDCS

Neuroplasticity, and functional connectivity are important physiological derivates of cognition, and behaviour. Recently introduced non-invasive brain stimulation techniques are suited to induce, and modulate respective physiological alterations. One of these techniques is transcranial direct curren...

Full description

Bibliographic Details
Main Author: Michael A. Nitsche
Format: Article
Language:English
Published: Frontiers Media S.A. 2014-04-01
Series:Frontiers in Psychology
Subjects:
Online Access:http://journal.frontiersin.org/Journal/10.3389/conf.fpsyg.2014.64.00010/full
Description
Summary:Neuroplasticity, and functional connectivity are important physiological derivates of cognition, and behaviour. Recently introduced non-invasive brain stimulation techniques are suited to induce, and modulate respective physiological alterations. One of these techniques is transcranial direct current stimulation (tDCS). Its primary mechanism of action is a polarity-dependent subthreshold shift of resting membrane potentials, the after-effects of stimulation depend on the glutamatergic system. Beyond these regional effects, tDCS has been shown recently to alter cortical, as well as cortico-subcortical functional network connectivity. This talk will give an overview about the physiological effects of tDCS, including animal data, and will cover functional consequences of tDCS. Furthermore, new developments with regard to optimization strategies, and the complex interaction of physiological and cognitive processes, will be presented and it will be discussed how tDCS relates to other non-invasive brain stimulation techniques, like transcranial magnetic stimulation (TMS), transcranial alternating current stimulation (tACS), and paired associative stimulation (PAS).
ISSN:1664-1078