Development of a Nakazima Test Suitable for Determining the Formability of Ultra-Thin Copper Sheets

The objective is to propose an accurate method for determining the forming limit curves (FLC) for ultra-thin metal sheets which are complex to obtain with conventional techniques. Nakazima tests are carried out to generate the FLCs of a pure copper and a copper beryllium alloy with a thickness of 0....

Full description

Bibliographic Details
Main Authors: Nejia Ayachi, Noamen Guermazi, Cong Hanh Pham, Pierre-Yves Manach
Format: Article
Language:English
Published: MDPI AG 2020-08-01
Series:Metals
Subjects:
Online Access:https://www.mdpi.com/2075-4701/10/9/1163
Description
Summary:The objective is to propose an accurate method for determining the forming limit curves (FLC) for ultra-thin metal sheets which are complex to obtain with conventional techniques. Nakazima tests are carried out to generate the FLCs of a pure copper and a copper beryllium alloy with a thickness of 0.1 mm. Because of the very small thickness of the sheets, the standard devices and the know-how of this test are no longer valid. Consequently, new tools have been designed in order to limit friction effect. Two different methods are used and compared to estimate the necking: the position-dependent measurement method (ISO Standard 12004-2), and the time-dependent method based on the analysis of the derivatives of the planar strain field. It is shown that the ISO standard method underestimates the forming limit curves. As the results present non linear strain paths, a compensation method is applied to correct the FLCs for the tested materials, which combines the effects of curvature, nonlinear strain paths and pressure. The curvature effect for such thickness and punch diameter on the FLCs is weak. The results show that this procedure enables to obtain FLCs that are close to those determined by the reference Marciniak method, leading to a minimum in major strain that converges to the plane strain state.
ISSN:2075-4701