Eleven‐Year Survey of the Magmatic‐Hydrothermal Fluids From Peteroa Volcano: Identifying Precursory Signals of the 2018–2019 Eruption
Abstract Over the past decade, we have conducted geochemical and isotopic monitoring of the fumarolic gases of the Peteroa volcano (Argentina‐Chile). Using the resulting data set, we constructed a conceptual model that describes the evolution of the magmatic‐hydrothermal system and identifies precur...
Main Authors: | , , , , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2023-11-01
|
Series: | Geochemistry, Geophysics, Geosystems |
Subjects: | |
Online Access: | https://doi.org/10.1029/2023GC011064 |
_version_ | 1827595681701822464 |
---|---|
author | Mariano Agusto María Clara Lamberti Franco Tassi Fabricio Carbajal Joaquín Llano Victoria Nogués Nicolás Núñez Hernán Sánchez Andrea Rizzo Sebastián García Jazmín Yiries María Laura Vélez Antonella Massenzio Gabriela Velasquez Claudia Bucarey Martín Gómez Pablo Euillades Víctor Ramos |
author_facet | Mariano Agusto María Clara Lamberti Franco Tassi Fabricio Carbajal Joaquín Llano Victoria Nogués Nicolás Núñez Hernán Sánchez Andrea Rizzo Sebastián García Jazmín Yiries María Laura Vélez Antonella Massenzio Gabriela Velasquez Claudia Bucarey Martín Gómez Pablo Euillades Víctor Ramos |
author_sort | Mariano Agusto |
collection | DOAJ |
description | Abstract Over the past decade, we have conducted geochemical and isotopic monitoring of the fumarolic gases of the Peteroa volcano (Argentina‐Chile). Using the resulting data set, we constructed a conceptual model that describes the evolution of the magmatic‐hydrothermal system and identifies precursory geochemical signals of the last eruption. Our data set includes new chemical and isotopic analyses of fumarolic gas samples collected from 2016 to 2021, as well as previously published data from the 2010–2015 period. After an eruptive period in 2010–2011, the activity was characterized by low degassing rates and seismic activity. However, an increase in seismic activity and fumarolic gas emissions was observed from 2016 to 2018–2019 eruptive episode, leading to a major phreato‐magmatic eruption. Fumarole gases show different compositions during quiescent versus unrest/eruptive degassing related to the interaction of deep (magmatic) and shallow (hydrothermal) fluid contributions. During quiescent periods, fumaroles exhibited low SO2/H2S, HF/CO2, and HCl/CO2 ratios (<0.1), revealing a dominant hydrothermal contribution. In contrast, during pre‐and syn‐eruptive periods, fumaroles showed ratios up to 100 times higher indicative of an enhanced magmatic input. When compared to the evolution of the seismic activity, the increment of magmatic‐related strong acidic gases suggests repeated inputs of hot magmatic fluids, which are only partially dissolved into the hydrothermal system feeding the fumaroles. Interestingly, the 3He/4He and δ13C‐CO2 values remained relatively constant during the magmatic and hydrothermal degassing in 2016–2021, suggesting that the deep magmatic gas source did not significantly change throughout variations in Peteroa's activity. |
first_indexed | 2024-03-09T02:57:56Z |
format | Article |
id | doaj.art-589876b2397646fd9aa3b97b8f4203b0 |
institution | Directory Open Access Journal |
issn | 1525-2027 |
language | English |
last_indexed | 2024-03-09T02:57:56Z |
publishDate | 2023-11-01 |
publisher | Wiley |
record_format | Article |
series | Geochemistry, Geophysics, Geosystems |
spelling | doaj.art-589876b2397646fd9aa3b97b8f4203b02023-12-04T22:20:36ZengWileyGeochemistry, Geophysics, Geosystems1525-20272023-11-012411n/an/a10.1029/2023GC011064Eleven‐Year Survey of the Magmatic‐Hydrothermal Fluids From Peteroa Volcano: Identifying Precursory Signals of the 2018–2019 EruptionMariano Agusto0María Clara Lamberti1Franco Tassi2Fabricio Carbajal3Joaquín Llano4Victoria Nogués5Nicolás Núñez6Hernán Sánchez7Andrea Rizzo8Sebastián García9Jazmín Yiries10María Laura Vélez11Antonella Massenzio12Gabriela Velasquez13Claudia Bucarey14Martín Gómez15Pablo Euillades16Víctor Ramos17Departamento de Ciencias Geológicas Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires Buenos Aires ArgentinaDepartamento de Ciencias Geológicas Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires Buenos Aires ArgentinaUniversità degli Studi di Firenze Firenze ItaliaSEGEMAR Observatorio Argentino de Vigilancia Volcánica (OAVV) Buenos Aires ArgentinaDepartamento de Ciencias Geológicas Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires Buenos Aires ArgentinaInstituto de Estudios Andinos “Don Pablo Groeber” (IDEAN) CONICET—Universidad de Buenos Aires Buenos Aires ArgentinaComisión Nacional de Energía Atómica (CNEA) ICES Buenos Aires ArgentinaComisión Nacional de Energía Atómica (CNEA) ICES Buenos Aires ArgentinaDepartment of Earth and Environmental Sciences University of Milano‐Bicocca Milan ItalySEGEMAR Observatorio Argentino de Vigilancia Volcánica (OAVV) Buenos Aires ArgentinaDepartamento de Ciencias Geológicas Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires Buenos Aires ArgentinaDepartamento de Ciencias Geológicas Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires Buenos Aires ArgentinaDepartamento de Ciencias Geológicas Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires Buenos Aires ArgentinaSERNAGEOMIN Observatorio Volcánico de los Andes del Sur (OVDAS) Temuco ChileSERNAGEOMIN Observatorio Volcánico de los Andes del Sur (OVDAS) Temuco ChileComisión Nacional de Energía Atómica (CNEA) ICES Buenos Aires ArgentinaFacultad de Ingeniería Instituto CEDIAC Universidad Nacional de Cuyo Mendoza ArgentinaDepartamento de Ciencias Geológicas Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires Buenos Aires ArgentinaAbstract Over the past decade, we have conducted geochemical and isotopic monitoring of the fumarolic gases of the Peteroa volcano (Argentina‐Chile). Using the resulting data set, we constructed a conceptual model that describes the evolution of the magmatic‐hydrothermal system and identifies precursory geochemical signals of the last eruption. Our data set includes new chemical and isotopic analyses of fumarolic gas samples collected from 2016 to 2021, as well as previously published data from the 2010–2015 period. After an eruptive period in 2010–2011, the activity was characterized by low degassing rates and seismic activity. However, an increase in seismic activity and fumarolic gas emissions was observed from 2016 to 2018–2019 eruptive episode, leading to a major phreato‐magmatic eruption. Fumarole gases show different compositions during quiescent versus unrest/eruptive degassing related to the interaction of deep (magmatic) and shallow (hydrothermal) fluid contributions. During quiescent periods, fumaroles exhibited low SO2/H2S, HF/CO2, and HCl/CO2 ratios (<0.1), revealing a dominant hydrothermal contribution. In contrast, during pre‐and syn‐eruptive periods, fumaroles showed ratios up to 100 times higher indicative of an enhanced magmatic input. When compared to the evolution of the seismic activity, the increment of magmatic‐related strong acidic gases suggests repeated inputs of hot magmatic fluids, which are only partially dissolved into the hydrothermal system feeding the fumaroles. Interestingly, the 3He/4He and δ13C‐CO2 values remained relatively constant during the magmatic and hydrothermal degassing in 2016–2021, suggesting that the deep magmatic gas source did not significantly change throughout variations in Peteroa's activity.https://doi.org/10.1029/2023GC011064geochemical monitoringPeteroa volcanoprecursory signalsmagmatic‐hydrothermal systemisotopic compositionvolcanic gases |
spellingShingle | Mariano Agusto María Clara Lamberti Franco Tassi Fabricio Carbajal Joaquín Llano Victoria Nogués Nicolás Núñez Hernán Sánchez Andrea Rizzo Sebastián García Jazmín Yiries María Laura Vélez Antonella Massenzio Gabriela Velasquez Claudia Bucarey Martín Gómez Pablo Euillades Víctor Ramos Eleven‐Year Survey of the Magmatic‐Hydrothermal Fluids From Peteroa Volcano: Identifying Precursory Signals of the 2018–2019 Eruption Geochemistry, Geophysics, Geosystems geochemical monitoring Peteroa volcano precursory signals magmatic‐hydrothermal system isotopic composition volcanic gases |
title | Eleven‐Year Survey of the Magmatic‐Hydrothermal Fluids From Peteroa Volcano: Identifying Precursory Signals of the 2018–2019 Eruption |
title_full | Eleven‐Year Survey of the Magmatic‐Hydrothermal Fluids From Peteroa Volcano: Identifying Precursory Signals of the 2018–2019 Eruption |
title_fullStr | Eleven‐Year Survey of the Magmatic‐Hydrothermal Fluids From Peteroa Volcano: Identifying Precursory Signals of the 2018–2019 Eruption |
title_full_unstemmed | Eleven‐Year Survey of the Magmatic‐Hydrothermal Fluids From Peteroa Volcano: Identifying Precursory Signals of the 2018–2019 Eruption |
title_short | Eleven‐Year Survey of the Magmatic‐Hydrothermal Fluids From Peteroa Volcano: Identifying Precursory Signals of the 2018–2019 Eruption |
title_sort | eleven year survey of the magmatic hydrothermal fluids from peteroa volcano identifying precursory signals of the 2018 2019 eruption |
topic | geochemical monitoring Peteroa volcano precursory signals magmatic‐hydrothermal system isotopic composition volcanic gases |
url | https://doi.org/10.1029/2023GC011064 |
work_keys_str_mv | AT marianoagusto elevenyearsurveyofthemagmatichydrothermalfluidsfrompeteroavolcanoidentifyingprecursorysignalsofthe20182019eruption AT mariaclaralamberti elevenyearsurveyofthemagmatichydrothermalfluidsfrompeteroavolcanoidentifyingprecursorysignalsofthe20182019eruption AT francotassi elevenyearsurveyofthemagmatichydrothermalfluidsfrompeteroavolcanoidentifyingprecursorysignalsofthe20182019eruption AT fabriciocarbajal elevenyearsurveyofthemagmatichydrothermalfluidsfrompeteroavolcanoidentifyingprecursorysignalsofthe20182019eruption AT joaquinllano elevenyearsurveyofthemagmatichydrothermalfluidsfrompeteroavolcanoidentifyingprecursorysignalsofthe20182019eruption AT victorianogues elevenyearsurveyofthemagmatichydrothermalfluidsfrompeteroavolcanoidentifyingprecursorysignalsofthe20182019eruption AT nicolasnunez elevenyearsurveyofthemagmatichydrothermalfluidsfrompeteroavolcanoidentifyingprecursorysignalsofthe20182019eruption AT hernansanchez elevenyearsurveyofthemagmatichydrothermalfluidsfrompeteroavolcanoidentifyingprecursorysignalsofthe20182019eruption AT andrearizzo elevenyearsurveyofthemagmatichydrothermalfluidsfrompeteroavolcanoidentifyingprecursorysignalsofthe20182019eruption AT sebastiangarcia elevenyearsurveyofthemagmatichydrothermalfluidsfrompeteroavolcanoidentifyingprecursorysignalsofthe20182019eruption AT jazminyiries elevenyearsurveyofthemagmatichydrothermalfluidsfrompeteroavolcanoidentifyingprecursorysignalsofthe20182019eruption AT marialauravelez elevenyearsurveyofthemagmatichydrothermalfluidsfrompeteroavolcanoidentifyingprecursorysignalsofthe20182019eruption AT antonellamassenzio elevenyearsurveyofthemagmatichydrothermalfluidsfrompeteroavolcanoidentifyingprecursorysignalsofthe20182019eruption AT gabrielavelasquez elevenyearsurveyofthemagmatichydrothermalfluidsfrompeteroavolcanoidentifyingprecursorysignalsofthe20182019eruption AT claudiabucarey elevenyearsurveyofthemagmatichydrothermalfluidsfrompeteroavolcanoidentifyingprecursorysignalsofthe20182019eruption AT martingomez elevenyearsurveyofthemagmatichydrothermalfluidsfrompeteroavolcanoidentifyingprecursorysignalsofthe20182019eruption AT pabloeuillades elevenyearsurveyofthemagmatichydrothermalfluidsfrompeteroavolcanoidentifyingprecursorysignalsofthe20182019eruption AT victorramos elevenyearsurveyofthemagmatichydrothermalfluidsfrompeteroavolcanoidentifyingprecursorysignalsofthe20182019eruption |