Summary: | The aim of this work is to measure the temperature variations by analyzing the plasmon signature on a metallic surface that is periodically structured and immersed in a liquid. A change in the temperature of the sample surface induces a modification of the local refractive index leading to a shift of the surface plasmon resonance (SPR) frequency due to the strong interaction between the evanescent electric field and the metallic surface. The experimental set-up used in this study to detect the refractive index changes is based on a metallic grating permitting a direct excitation of a plasmon wave, leading to a high sensibility, high-temperature range and contactless sensor within a very compact and simple device. The experimental set-up demonstrated that SPR could be used as a non-invasive, high-resolution temperature measurement method for metallic surfaces.
|