Summary: | The current study aims to probe the impacts of entropy in a hydromagnetic unsteady slip flow of viscous fluid past an exponentially stretching sheet. Appurtenant similarity variables are employed to transmute the governing partial differential equations into a system of non-linear differential equations, which are analytically solved by utilizing the homotopy analysis method (HAM). Moreover, a shooting technique with fourth−fifth order Runge−Kutta method is deployed to numerically solve the problem. The impact of the physical parameters that influence the flow and heat transmission phenomena are sketched, tabulated and discussed briefly. Additionally, the impact of these parameters on entropy generation is thoroughly discussed by plotting graphs of the local entropy generation number and the Bejan number.
|