DEEP LEARNING MODEL FOR BILINGUAL SENTIMENT CLASSIFICATION OF SHORT TEXTS

Sentiment analysis of short texts such as Twitter messages and comments in news portals is challenging due to the lack of contextual information. We propose a deep neural network model that uses bilingual word embeddings to effectively solve sentiment classification problem for a given pair of langu...

Full description

Bibliographic Details
Main Authors: Y. B. Abdullin, V. V. Ivanov
Format: Article
Language:English
Published: Saint Petersburg National Research University of Information Technologies, Mechanics and Optics (ITMO University) 2017-01-01
Series:Naučno-tehničeskij Vestnik Informacionnyh Tehnologij, Mehaniki i Optiki
Subjects:
Online Access:http://ntv.ifmo.ru/file/article/16415.pdf
Description
Summary:Sentiment analysis of short texts such as Twitter messages and comments in news portals is challenging due to the lack of contextual information. We propose a deep neural network model that uses bilingual word embeddings to effectively solve sentiment classification problem for a given pair of languages. We apply our approach to two corpora of two different language pairs: English-Russian and Russian-Kazakh. We show how to train a classifier in one language and predict in another. Our approach achieves 73% accuracy for English and 74% accuracy for Russian. For Kazakh sentiment analysis, we propose a baseline method, that achieves 60% accuracy; and a method to learn bilingual embeddings from a large unlabeled corpus using a bilingual word pairs.
ISSN:2226-1494
2500-0373