Applicability of Clinical Decision Support in Management among Patients Undergoing Cardiac Surgery in Intensive Care Unit: A Systematic Review

The advances achieved in recent decades regarding cardiac surgery have led to a new risk that goes beyond surgeons’ dexterity; postoperative hours are crucial for cardiac surgery patients and are usually spent in intensive care units (ICUs), where the patients need to be continuously monitored to ad...

Full description

Bibliographic Details
Main Authors: Miguel Pereira, Patricia Concheiro-Moscoso, Alexo López-Álvarez, Gerardo Baños, Alejandro Pazos, Javier Pereira
Format: Article
Language:English
Published: MDPI AG 2021-03-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/11/6/2880
Description
Summary:The advances achieved in recent decades regarding cardiac surgery have led to a new risk that goes beyond surgeons’ dexterity; postoperative hours are crucial for cardiac surgery patients and are usually spent in intensive care units (ICUs), where the patients need to be continuously monitored to adjust their treatment. Clinical decision support systems (CDSSs) have been developed to take this real-time information and provide clinical suggestions to physicians in order to reduce medical errors and to improve patient recovery. In this review, an initial total of 499 papers were considered after identification using PubMed, Web of Science, and CINAHL. Twenty-two studies were included after filtering, which included the deletion of duplications and the exclusion of titles or abstracts that were not of real interest. A review of these papers concluded the applicability and advances that CDSSs offer for both doctors and patients. Better prognosis and recovery rates are achieved by using this technology, which has also received high acceptance among most physicians. However, despite the evidence that well-designed CDSSs are effective, they still need to be refined to offer the best assistance possible, which may still take time, despite the promising models that have already been applied in real ICUs.
ISSN:2076-3417