Modeling the Impact of Driving Styles on Crash Severity Level Using SHRP 2 Naturalistic Driving Data

Previous studies have examined driving styles and how they are associated with crash risks relying on self-report questionnaires to categorize respondents based on pre-defined driving styles. Naturalistic driving studies provide a unique opportunity to examine this relationship differently. The curr...

Full description

Bibliographic Details
Main Authors: Kuan-Ting Chen, Huei-Yen Winnie Chen
Format: Article
Language:English
Published: MDPI AG 2022-11-01
Series:Safety
Subjects:
Online Access:https://www.mdpi.com/2313-576X/8/4/74
Description
Summary:Previous studies have examined driving styles and how they are associated with crash risks relying on self-report questionnaires to categorize respondents based on pre-defined driving styles. Naturalistic driving studies provide a unique opportunity to examine this relationship differently. The current study aimed to study how driving styles, derived from real-road driving, may relate to crash severity. To study the relationship, this study retrieved safety critical events (SCEs) from the SHRP 2 database and adopted joint modelling of the number of the aggregated crash severity levels (crash vs. non-crash) using the Diagonal Inflated Bivariate Poisson (DIBP) model. Variables examined included driving styles and various driver characteristics. Among driving styles examined, styles of maintenance of lower speeds and more adaptive responses to driving conditions were associated with fewer crashes given an SCE occurred. Longer driving experiences, more miles driven last year, and being female also reduced the number of crashes. Interestingly, older drivers were associated with both an increased number of crashes and increased number of non-crash SCEs. Future work may leverage more variables from the SHRP 2 database and widen the scope to examine different traffic conditions for a more complete picture of driving styles.
ISSN:2313-576X