Application of ANNs, ANFIS and RSM to estimating and optimizing the parameters that affect the yield and cost of biodiesel production

Biodiesel can easily be used as an alternative fuel in diesel engines. It is environmentally friendly and can be produced from low-cost feedstocks such as waste cooking oil (WCO). WCO contains a significant amount of free fatty acid, which is extracted by a two-step process of converting the free fa...

Full description

Bibliographic Details
Main Authors: Bahman Najafi, Sina Faizollahzadeh Ardabili, Shahaboddin Shamshirband, Kwok-wing Chau, Timon Rabczuk
Format: Article
Language:English
Published: Taylor & Francis Group 2018-01-01
Series:Engineering Applications of Computational Fluid Mechanics
Subjects:
Online Access:http://dx.doi.org/10.1080/19942060.2018.1502688
Description
Summary:Biodiesel can easily be used as an alternative fuel in diesel engines. It is environmentally friendly and can be produced from low-cost feedstocks such as waste cooking oil (WCO). WCO contains a significant amount of free fatty acid, which is extracted by a two-step process of converting the free fatty acid by acid catalysis (H2S04) and converting the triglycerides using an NaOH catalyst. Currently, the major challenge for the industrial production of biodiesel is optimizing the yield while meeting American Society for Testing and Materials (ASTM) standards. In this study, experiments were performed to optimize the reaction conditions. The studied experimental parameters were the alcohol types (methanol, ethanol), the alcohol-to-oil molar ratio (AOMR; 3:1, 6:1, 9:1), the amount of catalyst (0.5, 1.0, 1.5 wt% of the oil), the temperature of the reaction (50, 60, 70, 80°C), the mixing intensity (300, 600, 900 rpm), and the reaction time (30, 60, 90 min). The biodiesel production yield (BPY) was optimized based on the experimental data. The optimum value of the BPY based on methanol is 95.92%, which is obtained at 73.80°C, with a reaction time of 74.02 min, an AOMR of 6.58:1, a catalyst concentration of 1.13 and a mixing intensity of 824.45 rpm. In the case of ethanol, the optimum BPY is 95.53%. which is obtained at 64.96°C, with a reaction time of 88.02 min, an AOMR of 7.005:1, a catalyst concentration of 1.25 and a mixing intensity of 592.18 rpm. These results of biodiesel production were confirmed by the experimental data.
ISSN:1994-2060
1997-003X