Quantum Information Entropy for a Hyperbolic Double Well Potential in the Fractional Schrödinger Equation

In this study, we investigate the position and momentum Shannon entropy, denoted as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>S</mi><mi>x</mi></msub></semantics&g...

Full description

Bibliographic Details
Main Authors: R. Santana-Carrillo, J. M. Velázquez Peto, Guo-Hua Sun, Shi-Hai Dong
Format: Article
Language:English
Published: MDPI AG 2023-06-01
Series:Entropy
Subjects:
Online Access:https://www.mdpi.com/1099-4300/25/7/988
_version_ 1797589368181882880
author R. Santana-Carrillo
J. M. Velázquez Peto
Guo-Hua Sun
Shi-Hai Dong
author_facet R. Santana-Carrillo
J. M. Velázquez Peto
Guo-Hua Sun
Shi-Hai Dong
author_sort R. Santana-Carrillo
collection DOAJ
description In this study, we investigate the position and momentum Shannon entropy, denoted as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>S</mi><mi>x</mi></msub></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>S</mi><mi>p</mi></msub></semantics></math></inline-formula>, respectively, in the context of the fractional Schrödinger equation (FSE) for a hyperbolic double well potential (HDWP). We explore various values of the fractional derivative represented by <i>k</i> in our analysis. Our findings reveal intriguing behavior concerning the localization properties of the position entropy density, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>ρ</mi><mi>s</mi></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>, and the momentum entropy density, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>ρ</mi><mi>s</mi></msub><mrow><mo>(</mo><mi>p</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>, for low-lying states. Specifically, as the fractional derivative <i>k</i> decreases, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>ρ</mi><mi>s</mi></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> becomes more localized, whereas <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>ρ</mi><mi>s</mi></msub><mrow><mo>(</mo><mi>p</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> becomes more delocalized. Moreover, we observe that as the derivative <i>k</i> decreases, the position entropy <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>S</mi><mi>x</mi></msub></semantics></math></inline-formula> decreases, while the momentum entropy <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>S</mi><mi>p</mi></msub></semantics></math></inline-formula> increases. In particular, the sum of these entropies consistently increases with decreasing fractional derivative <i>k</i>. It is noteworthy that, despite the increase in position Shannon entropy <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>S</mi><mi>x</mi></msub></semantics></math></inline-formula> and the decrease in momentum Shannon entropy <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>S</mi><mi>p</mi></msub></semantics></math></inline-formula> with an increase in the depth <i>u</i> of the HDWP, the Beckner–Bialynicki-Birula–Mycielski (BBM) inequality relation remains satisfied. Furthermore, we examine the Fisher entropy and its dependence on the depth <i>u</i> of the HDWP and the fractional derivative <i>k</i>. Our results indicate that the Fisher entropy increases as the depth <i>u</i> of the HDWP is increased and the fractional derivative <i>k</i> is decreased.
first_indexed 2024-03-11T01:06:42Z
format Article
id doaj.art-5906cfaa4bd64d3cbd5d36b4aa313f9e
institution Directory Open Access Journal
issn 1099-4300
language English
last_indexed 2024-03-11T01:06:42Z
publishDate 2023-06-01
publisher MDPI AG
record_format Article
series Entropy
spelling doaj.art-5906cfaa4bd64d3cbd5d36b4aa313f9e2023-11-18T19:13:02ZengMDPI AGEntropy1099-43002023-06-0125798810.3390/e25070988Quantum Information Entropy for a Hyperbolic Double Well Potential in the Fractional Schrödinger EquationR. Santana-Carrillo0J. M. Velázquez Peto1Guo-Hua Sun2Shi-Hai Dong3Centro de Investigación en Computación, Instituto Politécnico Nacional, UPALM, Mexico City 07700, MexicoESIME-Culhuacan, Instituto Politécnico Nacional, Av. Santa Ana 1000, Mexico City 04430, MexicoCentro de Investigación en Computación, Instituto Politécnico Nacional, UPALM, Mexico City 07700, MexicoCentro de Investigación en Computación, Instituto Politécnico Nacional, UPALM, Mexico City 07700, MexicoIn this study, we investigate the position and momentum Shannon entropy, denoted as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>S</mi><mi>x</mi></msub></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>S</mi><mi>p</mi></msub></semantics></math></inline-formula>, respectively, in the context of the fractional Schrödinger equation (FSE) for a hyperbolic double well potential (HDWP). We explore various values of the fractional derivative represented by <i>k</i> in our analysis. Our findings reveal intriguing behavior concerning the localization properties of the position entropy density, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>ρ</mi><mi>s</mi></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>, and the momentum entropy density, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>ρ</mi><mi>s</mi></msub><mrow><mo>(</mo><mi>p</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>, for low-lying states. Specifically, as the fractional derivative <i>k</i> decreases, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>ρ</mi><mi>s</mi></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> becomes more localized, whereas <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>ρ</mi><mi>s</mi></msub><mrow><mo>(</mo><mi>p</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> becomes more delocalized. Moreover, we observe that as the derivative <i>k</i> decreases, the position entropy <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>S</mi><mi>x</mi></msub></semantics></math></inline-formula> decreases, while the momentum entropy <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>S</mi><mi>p</mi></msub></semantics></math></inline-formula> increases. In particular, the sum of these entropies consistently increases with decreasing fractional derivative <i>k</i>. It is noteworthy that, despite the increase in position Shannon entropy <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>S</mi><mi>x</mi></msub></semantics></math></inline-formula> and the decrease in momentum Shannon entropy <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>S</mi><mi>p</mi></msub></semantics></math></inline-formula> with an increase in the depth <i>u</i> of the HDWP, the Beckner–Bialynicki-Birula–Mycielski (BBM) inequality relation remains satisfied. Furthermore, we examine the Fisher entropy and its dependence on the depth <i>u</i> of the HDWP and the fractional derivative <i>k</i>. Our results indicate that the Fisher entropy increases as the depth <i>u</i> of the HDWP is increased and the fractional derivative <i>k</i> is decreased.https://www.mdpi.com/1099-4300/25/7/988hyperbolic double well potentialfractional Schrödinger equationShannon entropyFisher entropy
spellingShingle R. Santana-Carrillo
J. M. Velázquez Peto
Guo-Hua Sun
Shi-Hai Dong
Quantum Information Entropy for a Hyperbolic Double Well Potential in the Fractional Schrödinger Equation
Entropy
hyperbolic double well potential
fractional Schrödinger equation
Shannon entropy
Fisher entropy
title Quantum Information Entropy for a Hyperbolic Double Well Potential in the Fractional Schrödinger Equation
title_full Quantum Information Entropy for a Hyperbolic Double Well Potential in the Fractional Schrödinger Equation
title_fullStr Quantum Information Entropy for a Hyperbolic Double Well Potential in the Fractional Schrödinger Equation
title_full_unstemmed Quantum Information Entropy for a Hyperbolic Double Well Potential in the Fractional Schrödinger Equation
title_short Quantum Information Entropy for a Hyperbolic Double Well Potential in the Fractional Schrödinger Equation
title_sort quantum information entropy for a hyperbolic double well potential in the fractional schrodinger equation
topic hyperbolic double well potential
fractional Schrödinger equation
Shannon entropy
Fisher entropy
url https://www.mdpi.com/1099-4300/25/7/988
work_keys_str_mv AT rsantanacarrillo quantuminformationentropyforahyperbolicdoublewellpotentialinthefractionalschrodingerequation
AT jmvelazquezpeto quantuminformationentropyforahyperbolicdoublewellpotentialinthefractionalschrodingerequation
AT guohuasun quantuminformationentropyforahyperbolicdoublewellpotentialinthefractionalschrodingerequation
AT shihaidong quantuminformationentropyforahyperbolicdoublewellpotentialinthefractionalschrodingerequation