The extension of analytic solutions to FDEs to the negative half-line

An analytical framework for the extension of solutions to fractional differential equations (FDEs) to the negative half-line is presented in this paper. The proposed technique is based on the construction of a special characteristic equation corresponding to the original FDE (when the characteristic...

Full description

Bibliographic Details
Main Authors: Inga Timofejeva, Zenonas Navickas, Tadas Telksnys, Romas Marcinkevičius, Xiao-Jun Yang, Minvydas Ragulskis
Format: Article
Language:English
Published: AIMS Press 2021-01-01
Series:AIMS Mathematics
Subjects:
Online Access:http://www.aimspress.com/article/doi/10.3934/math.2021195?viewType=HTML
_version_ 1818596487804747776
author Inga Timofejeva
Zenonas Navickas
Tadas Telksnys
Romas Marcinkevičius
Xiao-Jun Yang
Minvydas Ragulskis
author_facet Inga Timofejeva
Zenonas Navickas
Tadas Telksnys
Romas Marcinkevičius
Xiao-Jun Yang
Minvydas Ragulskis
author_sort Inga Timofejeva
collection DOAJ
description An analytical framework for the extension of solutions to fractional differential equations (FDEs) to the negative half-line is presented in this paper. The proposed technique is based on the construction of a special characteristic equation corresponding to the original FDE (when the characteristic equation does exist). This characteristic equation enables the construction analytic solutions to FDEs are expressed in the form of infinite fractional power series. Necessary and sufficient conditions for the existence of such an extension are discussed in detail. It is demonstrated that the extension of solutions to FDEs to the negative half-line is not a single-valued operation. Computational experiments are used to illustrate the efficacy of the proposed scheme.
first_indexed 2024-12-16T11:32:42Z
format Article
id doaj.art-590b263c24b14ce5a5e7a9dc7fd7a6c7
institution Directory Open Access Journal
issn 2473-6988
language English
last_indexed 2024-12-16T11:32:42Z
publishDate 2021-01-01
publisher AIMS Press
record_format Article
series AIMS Mathematics
spelling doaj.art-590b263c24b14ce5a5e7a9dc7fd7a6c72022-12-21T22:33:12ZengAIMS PressAIMS Mathematics2473-69882021-01-01643257327110.3934/math.2021195The extension of analytic solutions to FDEs to the negative half-lineInga Timofejeva0Zenonas Navickas1Tadas Telksnys2Romas Marcinkevičius3Xiao-Jun Yang4Minvydas Ragulskis 51. Center for Nonlinear Systems, Kaunas University of Technology, Studentu 50-147, Kaunas LT-51368, Lithuania1. Center for Nonlinear Systems, Kaunas University of Technology, Studentu 50-147, Kaunas LT-51368, Lithuania 1. Center for Nonlinear Systems, Kaunas University of Technology, Studentu 50-147, Kaunas LT-51368, Lithuania2. Department of Software Engineering, Kaunas University of Technology, Studentu 50-415, Kaunas LT-51368, Lithuania3. School of Mathematics and State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology, No.1, Daxue Road, Xuzhou 221116, Jiangsu, P. R. China1. Center for Nonlinear Systems, Kaunas University of Technology, Studentu 50-147, Kaunas LT-51368, LithuaniaAn analytical framework for the extension of solutions to fractional differential equations (FDEs) to the negative half-line is presented in this paper. The proposed technique is based on the construction of a special characteristic equation corresponding to the original FDE (when the characteristic equation does exist). This characteristic equation enables the construction analytic solutions to FDEs are expressed in the form of infinite fractional power series. Necessary and sufficient conditions for the existence of such an extension are discussed in detail. It is demonstrated that the extension of solutions to FDEs to the negative half-line is not a single-valued operation. Computational experiments are used to illustrate the efficacy of the proposed scheme.http://www.aimspress.com/article/doi/10.3934/math.2021195?viewType=HTMLfractional differential equationoperator calculusnegative half-linesolitary waveinverse balancing
spellingShingle Inga Timofejeva
Zenonas Navickas
Tadas Telksnys
Romas Marcinkevičius
Xiao-Jun Yang
Minvydas Ragulskis
The extension of analytic solutions to FDEs to the negative half-line
AIMS Mathematics
fractional differential equation
operator calculus
negative half-line
solitary wave
inverse balancing
title The extension of analytic solutions to FDEs to the negative half-line
title_full The extension of analytic solutions to FDEs to the negative half-line
title_fullStr The extension of analytic solutions to FDEs to the negative half-line
title_full_unstemmed The extension of analytic solutions to FDEs to the negative half-line
title_short The extension of analytic solutions to FDEs to the negative half-line
title_sort extension of analytic solutions to fdes to the negative half line
topic fractional differential equation
operator calculus
negative half-line
solitary wave
inverse balancing
url http://www.aimspress.com/article/doi/10.3934/math.2021195?viewType=HTML
work_keys_str_mv AT ingatimofejeva theextensionofanalyticsolutionstofdestothenegativehalfline
AT zenonasnavickas theextensionofanalyticsolutionstofdestothenegativehalfline
AT tadastelksnys theextensionofanalyticsolutionstofdestothenegativehalfline
AT romasmarcinkevicius theextensionofanalyticsolutionstofdestothenegativehalfline
AT xiaojunyang theextensionofanalyticsolutionstofdestothenegativehalfline
AT minvydasragulskis theextensionofanalyticsolutionstofdestothenegativehalfline
AT ingatimofejeva extensionofanalyticsolutionstofdestothenegativehalfline
AT zenonasnavickas extensionofanalyticsolutionstofdestothenegativehalfline
AT tadastelksnys extensionofanalyticsolutionstofdestothenegativehalfline
AT romasmarcinkevicius extensionofanalyticsolutionstofdestothenegativehalfline
AT xiaojunyang extensionofanalyticsolutionstofdestothenegativehalfline
AT minvydasragulskis extensionofanalyticsolutionstofdestothenegativehalfline