Features of structure, magnetic state and electrodynamic performance of SrFe12−xInxO19

Abstract Indium-substituted strontium hexaferrites were prepared by the conventional solid-phase reaction method. Neutron diffraction patterns were obtained at room temperature and analyzed using the Rietveld methods. A linear dependence of the unit cell parameters is found. In3+ cations are located...

Full description

Bibliographic Details
Main Authors: V. A. Turchenko, S. V. Trukhanov, V. G. Kostishin, F. Damay, F. Porcher, D. S. Klygach, M. G. Vakhitov, D. Lyakhov, D. Michels, B. Bozzo, I. Fina, M. A. Almessiere, Y. Slimani, A. Baykal, D. Zhou, A. V. Trukhanov
Format: Article
Language:English
Published: Nature Portfolio 2021-09-01
Series:Scientific Reports
Online Access:https://doi.org/10.1038/s41598-021-97684-8
_version_ 1818344711549616128
author V. A. Turchenko
S. V. Trukhanov
V. G. Kostishin
F. Damay
F. Porcher
D. S. Klygach
M. G. Vakhitov
D. Lyakhov
D. Michels
B. Bozzo
I. Fina
M. A. Almessiere
Y. Slimani
A. Baykal
D. Zhou
A. V. Trukhanov
author_facet V. A. Turchenko
S. V. Trukhanov
V. G. Kostishin
F. Damay
F. Porcher
D. S. Klygach
M. G. Vakhitov
D. Lyakhov
D. Michels
B. Bozzo
I. Fina
M. A. Almessiere
Y. Slimani
A. Baykal
D. Zhou
A. V. Trukhanov
author_sort V. A. Turchenko
collection DOAJ
description Abstract Indium-substituted strontium hexaferrites were prepared by the conventional solid-phase reaction method. Neutron diffraction patterns were obtained at room temperature and analyzed using the Rietveld methods. A linear dependence of the unit cell parameters is found. In3+ cations are located mainly in octahedral positions of 4fVI and 12 k. The average crystallite size varies within 0.84–0.65 μm. With increasing substitution, the TC Curie temperature decreases monotonically down to ~ 520 K. ZFC and FC measurements showed a frustrated state. Upon substitution, the average and maximum sizes of ferrimagnetic clusters change in the opposite direction. The Mr remanent magnetization decreases down to ~ 20.2 emu/g at room temperature. The Ms spontaneous magnetization and the keff effective magnetocrystalline anisotropy constant are determined. With increasing substitution, the maximum of the ε/ real part of permittivity decreases in magnitude from ~ 3.3 to ~ 1.9 and shifts towards low frequencies from ~ 45.5 GHz to ~ 37.4 GHz. The maximum of the tg(α) dielectric loss tangent decreases from ~ 1.0 to ~ 0.7 and shifts towards low frequencies from ~ 40.6 GHz to ~ 37.3 GHz. The low-frequency maximum of the μ/ real part of permeability decreases from ~ 1.8 to ~ 0.9 and slightly shifts towards high frequencies up to ~ 34.7 GHz. The maximum of the tg(δ) magnetic loss tangent decreases from ~ 0.7 to ~ 0.5 and shifts slightly towards low frequencies from ~ 40.5 GHz to ~ 37.7 GHz. The discussion of microwave properties is based on the saturation magnetization, natural ferromagnetic resonance and dielectric polarization types.
first_indexed 2024-12-13T16:50:49Z
format Article
id doaj.art-5913e2f6a7c148f684151a29c041ab38
institution Directory Open Access Journal
issn 2045-2322
language English
last_indexed 2024-12-13T16:50:49Z
publishDate 2021-09-01
publisher Nature Portfolio
record_format Article
series Scientific Reports
spelling doaj.art-5913e2f6a7c148f684151a29c041ab382022-12-21T23:38:03ZengNature PortfolioScientific Reports2045-23222021-09-0111111410.1038/s41598-021-97684-8Features of structure, magnetic state and electrodynamic performance of SrFe12−xInxO19V. A. Turchenko0S. V. Trukhanov1V. G. Kostishin2F. Damay3F. Porcher4D. S. Klygach5M. G. Vakhitov6D. Lyakhov7D. Michels8B. Bozzo9I. Fina10M. A. Almessiere11Y. Slimani12A. Baykal13D. Zhou14A. V. Trukhanov15Joint Institute for Nuclear ResearchSouth Ural State UniversityNational University of Science and Technology “MISiS”Laboratoire Leon Brillouin, UMR12 CEA-CNRSLaboratoire Leon Brillouin, UMR12 CEA-CNRSSouth Ural State UniversitySouth Ural State UniversityComputer, Electrical and Mathematical Science and Engineering Division, 4700 King Abdullah University of Science and TechnologyComputer, Electrical and Mathematical Science and Engineering Division, 4700 King Abdullah University of Science and TechnologyInstitut de Ciencia de Materials de Barcelona-CSICInstitut de Ciencia de Materials de Barcelona-CSICDepartment of Biophysics, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal UniversityDepartment of Biophysics, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal UniversityDepartment of Nanomedicine Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal UniversityElectronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic Science and Engineering, Xi’an Jiaotong UniversitySouth Ural State UniversityAbstract Indium-substituted strontium hexaferrites were prepared by the conventional solid-phase reaction method. Neutron diffraction patterns were obtained at room temperature and analyzed using the Rietveld methods. A linear dependence of the unit cell parameters is found. In3+ cations are located mainly in octahedral positions of 4fVI and 12 k. The average crystallite size varies within 0.84–0.65 μm. With increasing substitution, the TC Curie temperature decreases monotonically down to ~ 520 K. ZFC and FC measurements showed a frustrated state. Upon substitution, the average and maximum sizes of ferrimagnetic clusters change in the opposite direction. The Mr remanent magnetization decreases down to ~ 20.2 emu/g at room temperature. The Ms spontaneous magnetization and the keff effective magnetocrystalline anisotropy constant are determined. With increasing substitution, the maximum of the ε/ real part of permittivity decreases in magnitude from ~ 3.3 to ~ 1.9 and shifts towards low frequencies from ~ 45.5 GHz to ~ 37.4 GHz. The maximum of the tg(α) dielectric loss tangent decreases from ~ 1.0 to ~ 0.7 and shifts towards low frequencies from ~ 40.6 GHz to ~ 37.3 GHz. The low-frequency maximum of the μ/ real part of permeability decreases from ~ 1.8 to ~ 0.9 and slightly shifts towards high frequencies up to ~ 34.7 GHz. The maximum of the tg(δ) magnetic loss tangent decreases from ~ 0.7 to ~ 0.5 and shifts slightly towards low frequencies from ~ 40.5 GHz to ~ 37.7 GHz. The discussion of microwave properties is based on the saturation magnetization, natural ferromagnetic resonance and dielectric polarization types.https://doi.org/10.1038/s41598-021-97684-8
spellingShingle V. A. Turchenko
S. V. Trukhanov
V. G. Kostishin
F. Damay
F. Porcher
D. S. Klygach
M. G. Vakhitov
D. Lyakhov
D. Michels
B. Bozzo
I. Fina
M. A. Almessiere
Y. Slimani
A. Baykal
D. Zhou
A. V. Trukhanov
Features of structure, magnetic state and electrodynamic performance of SrFe12−xInxO19
Scientific Reports
title Features of structure, magnetic state and electrodynamic performance of SrFe12−xInxO19
title_full Features of structure, magnetic state and electrodynamic performance of SrFe12−xInxO19
title_fullStr Features of structure, magnetic state and electrodynamic performance of SrFe12−xInxO19
title_full_unstemmed Features of structure, magnetic state and electrodynamic performance of SrFe12−xInxO19
title_short Features of structure, magnetic state and electrodynamic performance of SrFe12−xInxO19
title_sort features of structure magnetic state and electrodynamic performance of srfe12 xinxo19
url https://doi.org/10.1038/s41598-021-97684-8
work_keys_str_mv AT vaturchenko featuresofstructuremagneticstateandelectrodynamicperformanceofsrfe12xinxo19
AT svtrukhanov featuresofstructuremagneticstateandelectrodynamicperformanceofsrfe12xinxo19
AT vgkostishin featuresofstructuremagneticstateandelectrodynamicperformanceofsrfe12xinxo19
AT fdamay featuresofstructuremagneticstateandelectrodynamicperformanceofsrfe12xinxo19
AT fporcher featuresofstructuremagneticstateandelectrodynamicperformanceofsrfe12xinxo19
AT dsklygach featuresofstructuremagneticstateandelectrodynamicperformanceofsrfe12xinxo19
AT mgvakhitov featuresofstructuremagneticstateandelectrodynamicperformanceofsrfe12xinxo19
AT dlyakhov featuresofstructuremagneticstateandelectrodynamicperformanceofsrfe12xinxo19
AT dmichels featuresofstructuremagneticstateandelectrodynamicperformanceofsrfe12xinxo19
AT bbozzo featuresofstructuremagneticstateandelectrodynamicperformanceofsrfe12xinxo19
AT ifina featuresofstructuremagneticstateandelectrodynamicperformanceofsrfe12xinxo19
AT maalmessiere featuresofstructuremagneticstateandelectrodynamicperformanceofsrfe12xinxo19
AT yslimani featuresofstructuremagneticstateandelectrodynamicperformanceofsrfe12xinxo19
AT abaykal featuresofstructuremagneticstateandelectrodynamicperformanceofsrfe12xinxo19
AT dzhou featuresofstructuremagneticstateandelectrodynamicperformanceofsrfe12xinxo19
AT avtrukhanov featuresofstructuremagneticstateandelectrodynamicperformanceofsrfe12xinxo19