Evaluation of robust indoor platoon driving system of welfare personal vehicles by using model error compensator

In aging society, welfare personal vehicles have been widely used to improve the quality of life of elderly and handicapped persons. However, it is difficult for the users to steer the vehicle in narrow buildings. Accordingly, platoon driving of welfare personal vehicles has attracted attention as o...

Full description

Bibliographic Details
Main Authors: Tatsuya SUGANO, Yusuke DAN, Hiroshi OKAJIMA, Nobutomo MATSUNAGA
Format: Article
Language:Japanese
Published: The Japan Society of Mechanical Engineers 2016-07-01
Series:Nihon Kikai Gakkai ronbunshu
Subjects:
Online Access:https://www.jstage.jst.go.jp/article/transjsme/82/840/82_15-00690/_pdf/-char/en
Description
Summary:In aging society, welfare personal vehicles have been widely used to improve the quality of life of elderly and handicapped persons. However, it is difficult for the users to steer the vehicle in narrow buildings. Accordingly, platoon driving of welfare personal vehicles has attracted attention as one of the effective leading methods. The platoon driving system consists of the longitudinal control and the lateral control. The longitudinal control is based on Adaptive Cruise Control. If the vehicle parameters are adjusted for each user’s driving ability, the longitudinal control will be string unstable in the worst case. As for the lateral control, the following vehicle tracks the preceding vehicle according to the target point following algorithm. The following vehicle may collide with a wall due to the large tracking error at a sharp corner in buildings. In this paper, the robust and precise platoon driving system is proposed to realize the safe platoon driving. Firstly, the longitudinal controller stably keeps the inter-vehicle distance regardless of the short time-headway. Secondary, the lateral controller precisely tracks the wheel track of preceding vehicle by using way-points. Thirdly, the robust platoon control for the different vehicle dynamics is designed by Model Error Compensator. Finally, the effectiveness of our proposed system is evaluated by the driving experiments.
ISSN:2187-9761