Diverse partially nonlocal bright–dark Peregrine “three sisters” excitations in a (3+1)-dimensional vector nonlinear Schrödinger equation
This paper aims to analyze diverse excitations of partially nonlocal bright–dark Peregrine “three sisters” based on a nonautonomous (3+1)-dimensional vector partially nonlocal nonlinear Schrödinger equation with different diffractions in two horizontal directions by simplifying into an autonomous ve...
Main Author: | Yi-Xiang Chen |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2023-08-01
|
Series: | Results in Physics |
Subjects: | |
Online Access: | http://www.sciencedirect.com/science/article/pii/S2211379723004990 |
Similar Items
-
Peregrine Solitons of the Higher-Order, Inhomogeneous, Coupled, Discrete, and Nonlocal Nonlinear Schrödinger Equations
by: T. Uthayakumar, et al.
Published: (2020-12-01) -
(2+1)-dimensional two-component soliton excitations and their dynamical evolutions for the partially nonlocal nonlinearity
by: Yi-Xiang Chen, et al.
Published: (2022-06-01) -
The stability of bright–dark solitons in defocusing coupled nonlinear Schrödinger equation
by: Liming Ling, et al.
Published: (2022-06-01) -
Peregrine Solitons on a Periodic Background in the Vector Cubic-Quintic Nonlinear Schrödinger Equation
by: Yanlin Ye, et al.
Published: (2020-11-01) -
Review on the Stability of the Peregrine and Related Breathers
by: Miguel A. Alejo, et al.
Published: (2020-11-01)