Transcriptional regulation of proanthocyanidin biosynthesis pathway genes and transcription factors in Indigofera stachyodes Lindl. roots

Abstract Background Proanthocyanidins (PAs) have always been considered as important medicinal value component. In order to gain insights into the PA biosynthesis regulatory network in I. stachyodes roots, we analyzed the transcriptome of the I. stachyodes in Leaf, Stem, RootI (one-year-old root), a...

Full description

Bibliographic Details
Main Authors: Chongmin Wang, Jun Li, Tao Zhou, Yongping Zhang, Haijun Jin, Xiaoqing Liu
Format: Article
Language:English
Published: BMC 2022-09-01
Series:BMC Plant Biology
Subjects:
Online Access:https://doi.org/10.1186/s12870-022-03794-4
Description
Summary:Abstract Background Proanthocyanidins (PAs) have always been considered as important medicinal value component. In order to gain insights into the PA biosynthesis regulatory network in I. stachyodes roots, we analyzed the transcriptome of the I. stachyodes in Leaf, Stem, RootI (one-year-old root), and RootII (two-year-old root). Results In this study, a total of 110,779 non-redundant unigenes were obtained, of which 63,863 could be functionally annotated. Simultaneously, 75 structural genes that regulate PA biosynthesis were identified, of these 6 structural genes (IsF3′H1, IsANR2, IsLAR2, IsUGT72L1-3, IsMATE2, IsMATE3) may play an important role in the synthesis of PAs in I. stachyodes roots. Furthermore, co-expression network analysis revealed that 34 IsMYBs, 18 IsbHLHs, 15 IsWRKYs, 9 IsMADSs, and 3 IsWIPs hub TFs are potential regulators for PA accumulation. Among them, IsMYB24 and IsMYB79 may be closely involved in the PA biosynthesis in I. stachyodes roots. Conclusions The biosynthesis of PAs in I. stachyodes roots is mainly produced by the subsequent pathway of cyanidin. Our work provides new insights into the molecular pathways underlying PA accumulation and enhances our global understanding of transcriptome dynamics throughout different tissues.
ISSN:1471-2229