A Resilient Method for Visual–Inertial Fusion Based on Covariance Tuning

To improve localization and pose precision of visual–inertial simultaneous localization and mapping (viSLAM) in complex scenarios, it is necessary to tune the weights of the visual and inertial inputs during sensor fusion. To this end, we propose a resilient viSLAM algorithm based on covariance tuni...

Full description

Bibliographic Details
Main Authors: Kailin Li, Jiansheng Li, Ancheng Wang, Haolong Luo, Xueqiang Li, Zidi Yang
Format: Article
Language:English
Published: MDPI AG 2022-12-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/22/24/9836
_version_ 1797455304774909952
author Kailin Li
Jiansheng Li
Ancheng Wang
Haolong Luo
Xueqiang Li
Zidi Yang
author_facet Kailin Li
Jiansheng Li
Ancheng Wang
Haolong Luo
Xueqiang Li
Zidi Yang
author_sort Kailin Li
collection DOAJ
description To improve localization and pose precision of visual–inertial simultaneous localization and mapping (viSLAM) in complex scenarios, it is necessary to tune the weights of the visual and inertial inputs during sensor fusion. To this end, we propose a resilient viSLAM algorithm based on covariance tuning. During back-end optimization of the viSLAM process, the unit-weight root-mean-square error (RMSE) of the visual reprojection and IMU preintegration in each optimization is computed to construct a covariance tuning function, producing a new covariance matrix. This is used to perform another round of nonlinear optimization, effectively improving pose and localization precision without closed-loop detection. In the validation experiment, our algorithm outperformed the OKVIS, R-VIO, and VINS-Mono open-source viSLAM frameworks in pose and localization precision on the EuRoc dataset, at all difficulty levels.
first_indexed 2024-03-09T15:52:31Z
format Article
id doaj.art-5924829004da431b9cf07918e5b70f25
institution Directory Open Access Journal
issn 1424-8220
language English
last_indexed 2024-03-09T15:52:31Z
publishDate 2022-12-01
publisher MDPI AG
record_format Article
series Sensors
spelling doaj.art-5924829004da431b9cf07918e5b70f252023-11-24T17:56:08ZengMDPI AGSensors1424-82202022-12-012224983610.3390/s22249836A Resilient Method for Visual–Inertial Fusion Based on Covariance TuningKailin Li0Jiansheng Li1Ancheng Wang2Haolong Luo3Xueqiang Li4Zidi Yang5Institute of Geospatial Information, Information Engineering University, Zhengzhou 450001, ChinaInstitute of Geospatial Information, Information Engineering University, Zhengzhou 450001, ChinaInstitute of Geospatial Information, Information Engineering University, Zhengzhou 450001, ChinaInstitute of Geospatial Information, Information Engineering University, Zhengzhou 450001, ChinaInstitute of Geospatial Information, Information Engineering University, Zhengzhou 450001, ChinaInstitute of Geospatial Information, Information Engineering University, Zhengzhou 450001, ChinaTo improve localization and pose precision of visual–inertial simultaneous localization and mapping (viSLAM) in complex scenarios, it is necessary to tune the weights of the visual and inertial inputs during sensor fusion. To this end, we propose a resilient viSLAM algorithm based on covariance tuning. During back-end optimization of the viSLAM process, the unit-weight root-mean-square error (RMSE) of the visual reprojection and IMU preintegration in each optimization is computed to construct a covariance tuning function, producing a new covariance matrix. This is used to perform another round of nonlinear optimization, effectively improving pose and localization precision without closed-loop detection. In the validation experiment, our algorithm outperformed the OKVIS, R-VIO, and VINS-Mono open-source viSLAM frameworks in pose and localization precision on the EuRoc dataset, at all difficulty levels.https://www.mdpi.com/1424-8220/22/24/9836resilient sensor fusionsimultaneous localization and mappingvisual–inertial fusionnonlinear optimizationcovariance tuning
spellingShingle Kailin Li
Jiansheng Li
Ancheng Wang
Haolong Luo
Xueqiang Li
Zidi Yang
A Resilient Method for Visual–Inertial Fusion Based on Covariance Tuning
Sensors
resilient sensor fusion
simultaneous localization and mapping
visual–inertial fusion
nonlinear optimization
covariance tuning
title A Resilient Method for Visual–Inertial Fusion Based on Covariance Tuning
title_full A Resilient Method for Visual–Inertial Fusion Based on Covariance Tuning
title_fullStr A Resilient Method for Visual–Inertial Fusion Based on Covariance Tuning
title_full_unstemmed A Resilient Method for Visual–Inertial Fusion Based on Covariance Tuning
title_short A Resilient Method for Visual–Inertial Fusion Based on Covariance Tuning
title_sort resilient method for visual inertial fusion based on covariance tuning
topic resilient sensor fusion
simultaneous localization and mapping
visual–inertial fusion
nonlinear optimization
covariance tuning
url https://www.mdpi.com/1424-8220/22/24/9836
work_keys_str_mv AT kailinli aresilientmethodforvisualinertialfusionbasedoncovariancetuning
AT jianshengli aresilientmethodforvisualinertialfusionbasedoncovariancetuning
AT anchengwang aresilientmethodforvisualinertialfusionbasedoncovariancetuning
AT haolongluo aresilientmethodforvisualinertialfusionbasedoncovariancetuning
AT xueqiangli aresilientmethodforvisualinertialfusionbasedoncovariancetuning
AT zidiyang aresilientmethodforvisualinertialfusionbasedoncovariancetuning
AT kailinli resilientmethodforvisualinertialfusionbasedoncovariancetuning
AT jianshengli resilientmethodforvisualinertialfusionbasedoncovariancetuning
AT anchengwang resilientmethodforvisualinertialfusionbasedoncovariancetuning
AT haolongluo resilientmethodforvisualinertialfusionbasedoncovariancetuning
AT xueqiangli resilientmethodforvisualinertialfusionbasedoncovariancetuning
AT zidiyang resilientmethodforvisualinertialfusionbasedoncovariancetuning