Temperature-dependent sensitivity of iodide chemical ionization mass spectrometers

<p>Iodide chemical ionization mass spectrometry (CIMS) is a common analytical tool used in both laboratory and field experiments to measure a large suite of atmospherically relevant compounds. Here, we describe a systematic ion molecule reactor (IMR) temperature dependence of iodide CIMS analy...

Full description

Bibliographic Details
Main Authors: M. A. Robinson, J. A. Neuman, L. G. Huey, J. M. Roberts, S. S. Brown, P. R. Veres
Format: Article
Language:English
Published: Copernicus Publications 2022-07-01
Series:Atmospheric Measurement Techniques
Online Access:https://amt.copernicus.org/articles/15/4295/2022/amt-15-4295-2022.pdf
_version_ 1818002082772287488
author M. A. Robinson
M. A. Robinson
M. A. Robinson
J. A. Neuman
J. A. Neuman
L. G. Huey
J. M. Roberts
S. S. Brown
S. S. Brown
P. R. Veres
author_facet M. A. Robinson
M. A. Robinson
M. A. Robinson
J. A. Neuman
J. A. Neuman
L. G. Huey
J. M. Roberts
S. S. Brown
S. S. Brown
P. R. Veres
author_sort M. A. Robinson
collection DOAJ
description <p>Iodide chemical ionization mass spectrometry (CIMS) is a common analytical tool used in both laboratory and field experiments to measure a large suite of atmospherically relevant compounds. Here, we describe a systematic ion molecule reactor (IMR) temperature dependence of iodide CIMS analyte sensitivity for a wide range of analytes in laboratory experiments. Weakly bound iodide clusters, such as HCl, HONO, HCOOH, HCN, phenol, 2-nitrophenol, and acyl peroxynitrate (PAN) detected via the peroxy radical cluster, all exhibit strong IMR temperature dependence of sensitivity ranging from <span class="inline-formula">−3.4</span> % <span class="inline-formula"><sup>∘</sup></span>C<span class="inline-formula"><sup>−1</sup></span> to 5.9 % <span class="inline-formula"><sup>∘</sup></span>C<span class="inline-formula"><sup>−1</sup></span> (from 37 to 47 <span class="inline-formula"><sup>∘</sup></span>C). Strongly bound iodide clusters, such as Br<span class="inline-formula"><sub>2</sub></span>, N<span class="inline-formula"><sub>2</sub></span>O<span class="inline-formula"><sub>5</sub></span>, ClNO<span class="inline-formula"><sub>2</sub></span>, and PAN detected via the carboxylate anion, all exhibit little to no IMR temperature dependence ranging from 0.2 % <span class="inline-formula"><sup>∘</sup></span>C<span class="inline-formula"><sup>−1</sup></span> to <span class="inline-formula">−0.9</span> % <span class="inline-formula"><sup>∘</sup></span>C<span class="inline-formula"><sup>−1</sup></span> (from 37 to 47 <span class="inline-formula"><sup>∘</sup></span>C). The IMR temperature relationships of weakly bound clusters provide an estimate of net reaction enthalpy, and comparison with database values indicates that these clusters are in thermal equilibrium. Ground site HCOOH data collected in the summer of 2021 in Pasadena (CA) are corrected and show a reversal in the diel cycle, emphasizing the importance of this correction (<span class="inline-formula">35±6</span> % during the day, <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M18" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>-</mo><mn mathvariant="normal">26</mn><mo>±</mo><mn mathvariant="normal">2</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="39pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="5f68a989a9daf5d6cb167661ad06f8e3"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-15-4295-2022-ie00001.svg" width="39pt" height="10pt" src="amt-15-4295-2022-ie00001.png"/></svg:svg></span></span> % at night). Finally, we recommend two approaches to minimize this effect in the field, namely heating or cooling the IMR; the latter technique has the added benefit of improving absolute sensitivity.</p>
first_indexed 2024-04-14T03:41:22Z
format Article
id doaj.art-592b8fcec5364c6388290d9cd32818ba
institution Directory Open Access Journal
issn 1867-1381
1867-8548
language English
last_indexed 2024-04-14T03:41:22Z
publishDate 2022-07-01
publisher Copernicus Publications
record_format Article
series Atmospheric Measurement Techniques
spelling doaj.art-592b8fcec5364c6388290d9cd32818ba2022-12-22T02:14:30ZengCopernicus PublicationsAtmospheric Measurement Techniques1867-13811867-85482022-07-01154295430510.5194/amt-15-4295-2022Temperature-dependent sensitivity of iodide chemical ionization mass spectrometersM. A. Robinson0M. A. Robinson1M. A. Robinson2J. A. Neuman3J. A. Neuman4L. G. Huey5J. M. Roberts6S. S. Brown7S. S. Brown8P. R. Veres9NOAA Chemical Sciences Laboratory, Boulder, Colorado, USACooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado Boulder, Boulder, Colorado, USADepartment of Chemistry, University of Colorado Boulder, Boulder, Colorado, USANOAA Chemical Sciences Laboratory, Boulder, Colorado, USACooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado Boulder, Boulder, Colorado, USASchool of Earth and Atmospheric Science, Georgia Institute of Technology, Atlanta, Georgia, USANOAA Chemical Sciences Laboratory, Boulder, Colorado, USANOAA Chemical Sciences Laboratory, Boulder, Colorado, USADepartment of Chemistry, University of Colorado Boulder, Boulder, Colorado, USANOAA Chemical Sciences Laboratory, Boulder, Colorado, USA<p>Iodide chemical ionization mass spectrometry (CIMS) is a common analytical tool used in both laboratory and field experiments to measure a large suite of atmospherically relevant compounds. Here, we describe a systematic ion molecule reactor (IMR) temperature dependence of iodide CIMS analyte sensitivity for a wide range of analytes in laboratory experiments. Weakly bound iodide clusters, such as HCl, HONO, HCOOH, HCN, phenol, 2-nitrophenol, and acyl peroxynitrate (PAN) detected via the peroxy radical cluster, all exhibit strong IMR temperature dependence of sensitivity ranging from <span class="inline-formula">−3.4</span> % <span class="inline-formula"><sup>∘</sup></span>C<span class="inline-formula"><sup>−1</sup></span> to 5.9 % <span class="inline-formula"><sup>∘</sup></span>C<span class="inline-formula"><sup>−1</sup></span> (from 37 to 47 <span class="inline-formula"><sup>∘</sup></span>C). Strongly bound iodide clusters, such as Br<span class="inline-formula"><sub>2</sub></span>, N<span class="inline-formula"><sub>2</sub></span>O<span class="inline-formula"><sub>5</sub></span>, ClNO<span class="inline-formula"><sub>2</sub></span>, and PAN detected via the carboxylate anion, all exhibit little to no IMR temperature dependence ranging from 0.2 % <span class="inline-formula"><sup>∘</sup></span>C<span class="inline-formula"><sup>−1</sup></span> to <span class="inline-formula">−0.9</span> % <span class="inline-formula"><sup>∘</sup></span>C<span class="inline-formula"><sup>−1</sup></span> (from 37 to 47 <span class="inline-formula"><sup>∘</sup></span>C). The IMR temperature relationships of weakly bound clusters provide an estimate of net reaction enthalpy, and comparison with database values indicates that these clusters are in thermal equilibrium. Ground site HCOOH data collected in the summer of 2021 in Pasadena (CA) are corrected and show a reversal in the diel cycle, emphasizing the importance of this correction (<span class="inline-formula">35±6</span> % during the day, <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M18" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>-</mo><mn mathvariant="normal">26</mn><mo>±</mo><mn mathvariant="normal">2</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="39pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="5f68a989a9daf5d6cb167661ad06f8e3"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-15-4295-2022-ie00001.svg" width="39pt" height="10pt" src="amt-15-4295-2022-ie00001.png"/></svg:svg></span></span> % at night). Finally, we recommend two approaches to minimize this effect in the field, namely heating or cooling the IMR; the latter technique has the added benefit of improving absolute sensitivity.</p>https://amt.copernicus.org/articles/15/4295/2022/amt-15-4295-2022.pdf
spellingShingle M. A. Robinson
M. A. Robinson
M. A. Robinson
J. A. Neuman
J. A. Neuman
L. G. Huey
J. M. Roberts
S. S. Brown
S. S. Brown
P. R. Veres
Temperature-dependent sensitivity of iodide chemical ionization mass spectrometers
Atmospheric Measurement Techniques
title Temperature-dependent sensitivity of iodide chemical ionization mass spectrometers
title_full Temperature-dependent sensitivity of iodide chemical ionization mass spectrometers
title_fullStr Temperature-dependent sensitivity of iodide chemical ionization mass spectrometers
title_full_unstemmed Temperature-dependent sensitivity of iodide chemical ionization mass spectrometers
title_short Temperature-dependent sensitivity of iodide chemical ionization mass spectrometers
title_sort temperature dependent sensitivity of iodide chemical ionization mass spectrometers
url https://amt.copernicus.org/articles/15/4295/2022/amt-15-4295-2022.pdf
work_keys_str_mv AT marobinson temperaturedependentsensitivityofiodidechemicalionizationmassspectrometers
AT marobinson temperaturedependentsensitivityofiodidechemicalionizationmassspectrometers
AT marobinson temperaturedependentsensitivityofiodidechemicalionizationmassspectrometers
AT janeuman temperaturedependentsensitivityofiodidechemicalionizationmassspectrometers
AT janeuman temperaturedependentsensitivityofiodidechemicalionizationmassspectrometers
AT lghuey temperaturedependentsensitivityofiodidechemicalionizationmassspectrometers
AT jmroberts temperaturedependentsensitivityofiodidechemicalionizationmassspectrometers
AT ssbrown temperaturedependentsensitivityofiodidechemicalionizationmassspectrometers
AT ssbrown temperaturedependentsensitivityofiodidechemicalionizationmassspectrometers
AT prveres temperaturedependentsensitivityofiodidechemicalionizationmassspectrometers