Designing electronic properties of two-dimensional crystals through optimization of deformations

One of the enticing features common to most of the two-dimensional (2D) electronic systems that, in the wake of (and in parallel with) graphene, are currently at the forefront of materials science research is the ability to easily introduce a combination of planar deformations and bending in the sys...

Full description

Bibliographic Details
Main Authors: Gareth W Jones, Vitor M Pereira
Format: Article
Language:English
Published: IOP Publishing 2014-01-01
Series:New Journal of Physics
Subjects:
Online Access:https://doi.org/10.1088/1367-2630/16/9/093044
_version_ 1797751093688532992
author Gareth W Jones
Vitor M Pereira
author_facet Gareth W Jones
Vitor M Pereira
author_sort Gareth W Jones
collection DOAJ
description One of the enticing features common to most of the two-dimensional (2D) electronic systems that, in the wake of (and in parallel with) graphene, are currently at the forefront of materials science research is the ability to easily introduce a combination of planar deformations and bending in the system. Since the electronic properties are ultimately determined by the details of atomic orbital overlap, such mechanical manipulations translate into modified (or, at least, perturbed) electronic properties. Here, we present a general-purpose optimization framework for tailoring physical properties of 2D electronic systems by manipulating the state of local strain, allowing a one-step route from their design to experimental implementation. A definite example, chosen for its relevance in light of current experiments in graphene nanostructures, is the optimization of the experimental parameters that generate a prescribed spatial profile of pseudomagnetic fields (PMFs) in graphene. But the method is general enough to accommodate a multitude of possible experimental parameters and conditions whereby deformations can be imparted to the graphene lattice, and complies, by design, with grapheneʼs elastic equilibrium and elastic compatibility constraints. As a result, it efficiently answers the inverse problem of determining the optimal values of a set of external or control parameters (such as substrate topography, sample shape, load distribution, etc) that result in a graphene deformation whose associated PMF profile best matches a prescribed target. The ability to address this inverse problem in an expedited way is one key step for practical implementations of the concept of 2D systems with electronic properties strain-engineered to order. The general-purpose nature of this calculation strategy means that it can be easily applied to the optimization of other relevant physical quantities which directly depend on the local strain field, not just in graphene but in other 2D electronic membranes.
first_indexed 2024-03-12T16:42:25Z
format Article
id doaj.art-592d97c47ae444a8b061f3ddbdd3c533
institution Directory Open Access Journal
issn 1367-2630
language English
last_indexed 2024-03-12T16:42:25Z
publishDate 2014-01-01
publisher IOP Publishing
record_format Article
series New Journal of Physics
spelling doaj.art-592d97c47ae444a8b061f3ddbdd3c5332023-08-08T14:22:10ZengIOP PublishingNew Journal of Physics1367-26302014-01-0116909304410.1088/1367-2630/16/9/093044Designing electronic properties of two-dimensional crystals through optimization of deformationsGareth W Jones0Vitor M Pereira1School of Mathematics, The University of Manchester , Manchester M13 9PL, UK; Graphene Research Centre & Department of Physics, National University of Singapore , 2 Science Drive 3, Singapore 117542, SingaporeGraphene Research Centre & Department of Physics, National University of Singapore , 2 Science Drive 3, Singapore 117542, SingaporeOne of the enticing features common to most of the two-dimensional (2D) electronic systems that, in the wake of (and in parallel with) graphene, are currently at the forefront of materials science research is the ability to easily introduce a combination of planar deformations and bending in the system. Since the electronic properties are ultimately determined by the details of atomic orbital overlap, such mechanical manipulations translate into modified (or, at least, perturbed) electronic properties. Here, we present a general-purpose optimization framework for tailoring physical properties of 2D electronic systems by manipulating the state of local strain, allowing a one-step route from their design to experimental implementation. A definite example, chosen for its relevance in light of current experiments in graphene nanostructures, is the optimization of the experimental parameters that generate a prescribed spatial profile of pseudomagnetic fields (PMFs) in graphene. But the method is general enough to accommodate a multitude of possible experimental parameters and conditions whereby deformations can be imparted to the graphene lattice, and complies, by design, with grapheneʼs elastic equilibrium and elastic compatibility constraints. As a result, it efficiently answers the inverse problem of determining the optimal values of a set of external or control parameters (such as substrate topography, sample shape, load distribution, etc) that result in a graphene deformation whose associated PMF profile best matches a prescribed target. The ability to address this inverse problem in an expedited way is one key step for practical implementations of the concept of 2D systems with electronic properties strain-engineered to order. The general-purpose nature of this calculation strategy means that it can be easily applied to the optimization of other relevant physical quantities which directly depend on the local strain field, not just in graphene but in other 2D electronic membranes.https://doi.org/10.1088/1367-2630/16/9/093044graphene and 2D crystalsstrain-engineeringtunable electronic membranes81.05.ue02.30.Zz46.25.-y
spellingShingle Gareth W Jones
Vitor M Pereira
Designing electronic properties of two-dimensional crystals through optimization of deformations
New Journal of Physics
graphene and 2D crystals
strain-engineering
tunable electronic membranes
81.05.ue
02.30.Zz
46.25.-y
title Designing electronic properties of two-dimensional crystals through optimization of deformations
title_full Designing electronic properties of two-dimensional crystals through optimization of deformations
title_fullStr Designing electronic properties of two-dimensional crystals through optimization of deformations
title_full_unstemmed Designing electronic properties of two-dimensional crystals through optimization of deformations
title_short Designing electronic properties of two-dimensional crystals through optimization of deformations
title_sort designing electronic properties of two dimensional crystals through optimization of deformations
topic graphene and 2D crystals
strain-engineering
tunable electronic membranes
81.05.ue
02.30.Zz
46.25.-y
url https://doi.org/10.1088/1367-2630/16/9/093044
work_keys_str_mv AT garethwjones designingelectronicpropertiesoftwodimensionalcrystalsthroughoptimizationofdeformations
AT vitormpereira designingelectronicpropertiesoftwodimensionalcrystalsthroughoptimizationofdeformations