Mn-doped ZnO nanopowders prepared by sol–gel and microwave-assisted sol–gel methods and their photocatalytic properties

Although the microwave-assisted sol–gel method is quite frequently used for the preparation of oxide nanostructures, the synergism of the reaction pathways is not fully explained. However, state-of-the-art theoretical and practical results of high novelty can be achieved by continuously evaluating t...

Full description

Bibliographic Details
Main Authors: Cristina Maria Vlăduț, Crina Anastasescu, Silviu Preda, Oana Catalina Mocioiu, Simona Petrescu, Jeanina Pandele-Cusu, Dana Culita, Veronica Bratan, Ioan Balint, Maria Zaharescu
Format: Article
Language:English
Published: Beilstein-Institut 2024-10-01
Series:Beilstein Journal of Nanotechnology
Subjects:
Online Access:https://doi.org/10.3762/bjnano.15.104
Description
Summary:Although the microwave-assisted sol–gel method is quite frequently used for the preparation of oxide nanostructures, the synergism of the reaction pathways is not fully explained. However, state-of-the-art theoretical and practical results of high novelty can be achieved by continuously evaluating the as-synthesized materials. The present paper presents a comparative study of Mn-doped ZnO nanopowders prepared by both sol–gel and microwave-assisted sol–gel methods. The structural, morphological, and optical properties of the as-obtained powders were established and correlated with their newly proved functionality, namely, the ability to photogenerate distinct reactive oxygen species (·OH or O2−) and to act as photoactive materials in aqueous media. The solar light-induced mineralization of oxalic acid by Mn-doped ZnO materials was clearly observed while similar amounts of generated CO2 were measured for both catalysts. These inexpensive semiconductor materials, which proved to be light-responsive, can be further used for developing water depollution technologies based on solar light energy.
ISSN:2190-4286