Impact of the interaction of material production and mechanical processing on the magnetic properties of non-oriented electrical steel

Thin laminations of non-grain oriented (NO) electrical steels form the magnetic core of rotating electrical machines. The magnetic properties of these laminations are therefore key elements for the efficiency of electric drives and need to be fully utilized. Ideally, high magnetization and low losse...

Full description

Bibliographic Details
Main Authors: Nora Leuning, Simon Steentjes, Anett Stöcker, Rudolf Kawalla, Xuefei Wei, Jens Dierdorf, Gerhard Hirt, Stefan Roggenbuck, Sandra Korte-Kerzel, Hannes A. Weiss, Wolfram Volk, Kay Hameyer
Format: Article
Language:English
Published: AIP Publishing LLC 2018-04-01
Series:AIP Advances
Online Access:http://dx.doi.org/10.1063/1.4994143
Description
Summary:Thin laminations of non-grain oriented (NO) electrical steels form the magnetic core of rotating electrical machines. The magnetic properties of these laminations are therefore key elements for the efficiency of electric drives and need to be fully utilized. Ideally, high magnetization and low losses are realized over the entire polarization and frequency spectrum at reasonable production and processing costs. However, such an ideal material does not exist and thus, achievable magnetic properties need to be deduced from the respective application requirements. Parameters of the electrical steel such as lamination thickness, microstructure and texture affect the magnetic properties as well as their polarization and frequency dependence. These structural features represent possibilities to actively alter the magnetic properties, e.g., magnetization curve, magnetic loss or frequency dependence. This paper studies the influence of production and processing on the resulting magnetic properties of a 2.4 wt% Si electrical steel. Aim is to close the gap between production influence on the material properties and its resulting effect on the magnetization curves and losses at different frequencies with a strong focus on occurring interdependencies between production and mechanical processing. The material production is realized on an experimental processing route that comprises the steps of hot rolling, cold rolling, annealing and punching.
ISSN:2158-3226