Global solution in a weak energy class for Klein-Gordon-Schrödinger system

Based on the possible singularity of stationary state, we revisit the initial boundary value problem of the classical Klein-Gordon-Schrödinger (KGS) system in one space dimension. The wellposedness is established in a class of Sobolev NLS solutions together with exponentially growing KG solutions.

Bibliographic Details
Main Authors: Qihong Shi, Yaqian Jia, Xunyang Wang
Format: Article
Language:English
Published: AIMS Press 2022-02-01
Series:Electronic Research Archive
Subjects:
Online Access:https://www.aimspress.com/article/doi/10.3934/era.2022033?viewType=HTML
_version_ 1798031132646703104
author Qihong Shi
Yaqian Jia
Xunyang Wang
author_facet Qihong Shi
Yaqian Jia
Xunyang Wang
author_sort Qihong Shi
collection DOAJ
description Based on the possible singularity of stationary state, we revisit the initial boundary value problem of the classical Klein-Gordon-Schrödinger (KGS) system in one space dimension. The wellposedness is established in a class of Sobolev NLS solutions together with exponentially growing KG solutions.
first_indexed 2024-04-11T19:52:36Z
format Article
id doaj.art-595dabb6897f41a598d7b9cb716029c6
institution Directory Open Access Journal
issn 2688-1594
language English
last_indexed 2024-04-11T19:52:36Z
publishDate 2022-02-01
publisher AIMS Press
record_format Article
series Electronic Research Archive
spelling doaj.art-595dabb6897f41a598d7b9cb716029c62022-12-22T04:06:16ZengAIMS PressElectronic Research Archive2688-15942022-02-0130263364310.3934/era.2022033Global solution in a weak energy class for Klein-Gordon-Schrödinger systemQihong Shi 0Yaqian Jia1Xunyang Wang21. Department of Mathematics, Lanzhou University of Technology, Lanzhou 730050, China1. Department of Mathematics, Lanzhou University of Technology, Lanzhou 730050, China1. Department of Mathematics, Lanzhou University of Technology, Lanzhou 730050, China 2. State Grid Gansu Electric Power Research Institute, Lanzhou 730070, ChinaBased on the possible singularity of stationary state, we revisit the initial boundary value problem of the classical Klein-Gordon-Schrödinger (KGS) system in one space dimension. The wellposedness is established in a class of Sobolev NLS solutions together with exponentially growing KG solutions.https://www.aimspress.com/article/doi/10.3934/era.2022033?viewType=HTMLkgs systemweak solutionglobal wellposednessenergy space
spellingShingle Qihong Shi
Yaqian Jia
Xunyang Wang
Global solution in a weak energy class for Klein-Gordon-Schrödinger system
Electronic Research Archive
kgs system
weak solution
global wellposedness
energy space
title Global solution in a weak energy class for Klein-Gordon-Schrödinger system
title_full Global solution in a weak energy class for Klein-Gordon-Schrödinger system
title_fullStr Global solution in a weak energy class for Klein-Gordon-Schrödinger system
title_full_unstemmed Global solution in a weak energy class for Klein-Gordon-Schrödinger system
title_short Global solution in a weak energy class for Klein-Gordon-Schrödinger system
title_sort global solution in a weak energy class for klein gordon schrodinger system
topic kgs system
weak solution
global wellposedness
energy space
url https://www.aimspress.com/article/doi/10.3934/era.2022033?viewType=HTML
work_keys_str_mv AT qihongshi globalsolutioninaweakenergyclassforkleingordonschrodingersystem
AT yaqianjia globalsolutioninaweakenergyclassforkleingordonschrodingersystem
AT xunyangwang globalsolutioninaweakenergyclassforkleingordonschrodingersystem