Systematic errors in the perception of rhythm
One hypothesis for why humans enjoy musical rhythms relates to their prediction of when each beat should occur. The ability to predict the timing of an event is important from an evolutionary perspective. Therefore, our brains have evolved internal mechanisms for processing the progression of time....
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Frontiers Media S.A.
2022-11-01
|
Series: | Frontiers in Human Neuroscience |
Subjects: | |
Online Access: | https://www.frontiersin.org/articles/10.3389/fnhum.2022.1009219/full |
_version_ | 1817976256141983744 |
---|---|
author | Jiaan Mansuri Hassan Aleem Hassan Aleem Norberto M. Grzywacz Norberto M. Grzywacz Norberto M. Grzywacz Norberto M. Grzywacz Norberto M. Grzywacz |
author_facet | Jiaan Mansuri Hassan Aleem Hassan Aleem Norberto M. Grzywacz Norberto M. Grzywacz Norberto M. Grzywacz Norberto M. Grzywacz Norberto M. Grzywacz |
author_sort | Jiaan Mansuri |
collection | DOAJ |
description | One hypothesis for why humans enjoy musical rhythms relates to their prediction of when each beat should occur. The ability to predict the timing of an event is important from an evolutionary perspective. Therefore, our brains have evolved internal mechanisms for processing the progression of time. However, due to inherent noise in neural signals, this prediction is not always accurate. Theoretical considerations of optimal estimates suggest the occurrence of certain systematic errors made by the brain when estimating the timing of beats in rhythms. Here, we tested psychophysically whether these systematic errors exist and if so, how they depend on stimulus parameters. Our experimental data revealed two main types of systematic errors. First, observers perceived the time of the last beat of a rhythmic pattern as happening earlier than actual when the inter-beat interval was short. Second, the perceived time of the last beat was later than the actual when the inter-beat interval was long. The magnitude of these systematic errors fell as the number of beats increased. However, with many beats, the errors due to long inter-beat intervals became more apparent. We propose a Bayesian model for these systematic errors. The model fits these data well, allowing us to offer possible explanations for how these errors occurred. For instance, neural processes possibly contributing to the errors include noisy and temporally asymmetric impulse responses, priors preferring certain time intervals, and better-early-than-late loss functions. We finish this article with brief discussions of both the implications of systematic errors for the appreciation of rhythm and the possible compensation by the brain’s motor system during a musical performance. |
first_indexed | 2024-04-13T22:00:12Z |
format | Article |
id | doaj.art-5965962a910e45228544b6ef086bf1ba |
institution | Directory Open Access Journal |
issn | 1662-5161 |
language | English |
last_indexed | 2024-04-13T22:00:12Z |
publishDate | 2022-11-01 |
publisher | Frontiers Media S.A. |
record_format | Article |
series | Frontiers in Human Neuroscience |
spelling | doaj.art-5965962a910e45228544b6ef086bf1ba2022-12-22T02:28:07ZengFrontiers Media S.A.Frontiers in Human Neuroscience1662-51612022-11-011610.3389/fnhum.2022.10092191009219Systematic errors in the perception of rhythmJiaan Mansuri0Hassan Aleem1Hassan Aleem2Norberto M. Grzywacz3Norberto M. Grzywacz4Norberto M. Grzywacz5Norberto M. Grzywacz6Norberto M. Grzywacz7Department of Biology, Georgetown University, Washington, DC, United StatesInterdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, United StatesDepartment of Molecular Pharmacology and Neuroscience, Loyola University Chicago, Chicago, IL, United StatesInterdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, United StatesDepartment of Molecular Pharmacology and Neuroscience, Loyola University Chicago, Chicago, IL, United StatesDepartment of Physics, Georgetown University, Washington, DC, United StatesDepartment of Neuroscience, Georgetown University, Washington, DC, United StatesDepartment of Psychology, Loyola University Chicago, Chicago, IL, United StatesOne hypothesis for why humans enjoy musical rhythms relates to their prediction of when each beat should occur. The ability to predict the timing of an event is important from an evolutionary perspective. Therefore, our brains have evolved internal mechanisms for processing the progression of time. However, due to inherent noise in neural signals, this prediction is not always accurate. Theoretical considerations of optimal estimates suggest the occurrence of certain systematic errors made by the brain when estimating the timing of beats in rhythms. Here, we tested psychophysically whether these systematic errors exist and if so, how they depend on stimulus parameters. Our experimental data revealed two main types of systematic errors. First, observers perceived the time of the last beat of a rhythmic pattern as happening earlier than actual when the inter-beat interval was short. Second, the perceived time of the last beat was later than the actual when the inter-beat interval was long. The magnitude of these systematic errors fell as the number of beats increased. However, with many beats, the errors due to long inter-beat intervals became more apparent. We propose a Bayesian model for these systematic errors. The model fits these data well, allowing us to offer possible explanations for how these errors occurred. For instance, neural processes possibly contributing to the errors include noisy and temporally asymmetric impulse responses, priors preferring certain time intervals, and better-early-than-late loss functions. We finish this article with brief discussions of both the implications of systematic errors for the appreciation of rhythm and the possible compensation by the brain’s motor system during a musical performance.https://www.frontiersin.org/articles/10.3389/fnhum.2022.1009219/fullloss functionBayesian theorysystematic errorneural noisetemporal predictionrhythm |
spellingShingle | Jiaan Mansuri Hassan Aleem Hassan Aleem Norberto M. Grzywacz Norberto M. Grzywacz Norberto M. Grzywacz Norberto M. Grzywacz Norberto M. Grzywacz Systematic errors in the perception of rhythm Frontiers in Human Neuroscience loss function Bayesian theory systematic error neural noise temporal prediction rhythm |
title | Systematic errors in the perception of rhythm |
title_full | Systematic errors in the perception of rhythm |
title_fullStr | Systematic errors in the perception of rhythm |
title_full_unstemmed | Systematic errors in the perception of rhythm |
title_short | Systematic errors in the perception of rhythm |
title_sort | systematic errors in the perception of rhythm |
topic | loss function Bayesian theory systematic error neural noise temporal prediction rhythm |
url | https://www.frontiersin.org/articles/10.3389/fnhum.2022.1009219/full |
work_keys_str_mv | AT jiaanmansuri systematicerrorsintheperceptionofrhythm AT hassanaleem systematicerrorsintheperceptionofrhythm AT hassanaleem systematicerrorsintheperceptionofrhythm AT norbertomgrzywacz systematicerrorsintheperceptionofrhythm AT norbertomgrzywacz systematicerrorsintheperceptionofrhythm AT norbertomgrzywacz systematicerrorsintheperceptionofrhythm AT norbertomgrzywacz systematicerrorsintheperceptionofrhythm AT norbertomgrzywacz systematicerrorsintheperceptionofrhythm |