Summary: | We present a novel cavity QED system in which a Bose–Einstein condensate (BEC) is trapped within a high-finesse optical cavity whose length may be adjusted to access both single-mode and multimode configurations. We demonstrate the coupling of an atomic ensemble to the cavity in both configurations and measure that the single-atom, ${\rm TE}{{{\rm M}}_{0,0}}$ -mode cooperativity exceeds unity. The atoms are confined either within an intracavity far-off-resonance optical dipole trap or a crossed optical dipole trap via transversely oriented lasers. Multimode cavity QED provides fully emergent and dynamical optical lattices for intracavity BECs, in that the process of atomic self-organization may be described as a continuous symmetry breaking phase transition resulting in the emergence of a compliant lattice with phonon-like excitations. Such systems will enable explorations of quantum soft matter, including superfluid smectics, superfluid glasses, and spin glasses as well as neuromorphic associative memory.
|