Transitioning from Simulation to Reality: Applying Chatter Detection Models to Real-World Machining Data
Chatter, a self-excited vibration phenomenon, is a critical challenge in high-speed machining operations, affecting tool life, product surface quality, and overall process efficiency. While machine learning models trained on simulated data have shown promise in detecting chatter, their real-world ap...
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2024-12-01
|
Series: | Machines |
Subjects: | |
Online Access: | https://www.mdpi.com/2075-1702/12/12/923 |