Interfacial Pockels Effect of Solvents with a Larger Static Dielectric Constant than Water and an Ionic Liquid on the Surface of a Transparent Oxide Electrode

The optical Pockels effect is a change in the refractive index proportional to an applied electric field. As a typical example of the interfacial Pockels effect occurring at interfaces where the spatial inversion symmetry is broken, it is known that water in the electric double layer (EDL) on the tr...

Full description

Bibliographic Details
Main Authors: Akihiro Okada, Takayoshi Kobayashi, Eiji Tokunaga
Format: Article
Language:English
Published: MDPI AG 2022-02-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/12/5/2454
Description
Summary:The optical Pockels effect is a change in the refractive index proportional to an applied electric field. As a typical example of the interfacial Pockels effect occurring at interfaces where the spatial inversion symmetry is broken, it is known that water in the electric double layer (EDL) on the transparent oxide electrode surface has a large Pockels coefficient, but the physical factors that determine its size are not clear. Therefore, we experimentally studied the Pockels effect of water and other characteristic liquids—formamide (FA), methylformamide (NMF) (these two have larger static dielectric constants than water), dimethylformamide (DMF), and an ionic liquid that is itself salts (IL, [BMIM] [BF<sub>4</sub>])—and evaluated their Pockels coefficients in the EDL on the transparent electrode surface. The magnitude of the Pockels coefficient was found to be in the order of water, DMF, FA, NMF, and IL, with the magnitude of the static dielectric constant not being an important factor.
ISSN:2076-3417