Summary: | We study black and white hole analogs in Weyl semimetals with inhomogeneous nodal tilts. We study how the presence of a microscopic lattice, giving rise to low-energy fermion doubler states at large momenta that are not present for elementary particles, affects the analogy between Weyl Hamiltonians and general relativity. Using a microscopic tight-binding lattice model, we find the doubler states to give rise to Hawking fragmentation and Hawking attenuation of wave packets by the analog event horizon. These phenomena depend on an analog Hawking temperature and can be measured in metamaterials and solids, as we confirm by numerical simulations.
|