Machine learning-based assessment of the impact of the manufacturing process on battery electrode heterogeneity

Electrode manufacturing process strongly impacts lithium-ion battery characteristics. The electrode slurry properties and the coating parameters are among the main factors influencing the electrode heterogeneity which impacts the battery cell performance and lifetime. However, the analysis of the im...

Full description

Bibliographic Details
Main Authors: Marc Duquesnoy, Iker Boyano, Larraitz Ganborena, Pablo Cereijo, Elixabete Ayerbe, Alejandro A. Franco
Format: Article
Language:English
Published: Elsevier 2021-09-01
Series:Energy and AI
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2666546821000446
_version_ 1819111431910457344
author Marc Duquesnoy
Iker Boyano
Larraitz Ganborena
Pablo Cereijo
Elixabete Ayerbe
Alejandro A. Franco
author_facet Marc Duquesnoy
Iker Boyano
Larraitz Ganborena
Pablo Cereijo
Elixabete Ayerbe
Alejandro A. Franco
author_sort Marc Duquesnoy
collection DOAJ
description Electrode manufacturing process strongly impacts lithium-ion battery characteristics. The electrode slurry properties and the coating parameters are among the main factors influencing the electrode heterogeneity which impacts the battery cell performance and lifetime. However, the analysis of the impact of electrode manufacturing parameters on the electrode heterogeneity is difficult to be quantified and automatized due to the large number of parameters that can be adjusted in the process. In this work, a data-driven methodology was developed for automatic assessment of the impact of parameters such as the formulation and liquid-to-solid ratio in the slurry, and the gap used for its coating on the current collector, on the electrodes heterogeneity. A dataset generated by experimental measurements was used for training and testing a Machine Learning (ML) classifier namely Gaussian Naives Bayes algorithm, for predicting if an electrode is homogeneous or heterogeneous depending on the manufacturing parameters. Lastly, through a 2D representation, the impact of the manufacturing parameters on the electrode heterogeneity was assessed in detail, paving the way towards a powerful tool for the optimization of next generation of battery electrodes.
first_indexed 2024-12-22T03:57:31Z
format Article
id doaj.art-59aea2437ec140cb99ff1c96869177cf
institution Directory Open Access Journal
issn 2666-5468
language English
last_indexed 2024-12-22T03:57:31Z
publishDate 2021-09-01
publisher Elsevier
record_format Article
series Energy and AI
spelling doaj.art-59aea2437ec140cb99ff1c96869177cf2022-12-21T18:39:50ZengElsevierEnergy and AI2666-54682021-09-015100090Machine learning-based assessment of the impact of the manufacturing process on battery electrode heterogeneityMarc Duquesnoy0Iker Boyano1Larraitz Ganborena2Pablo Cereijo3Elixabete Ayerbe4Alejandro A. Franco5Laboratoire de Réactivité et Chimie des Solides (LRCS), UMR CNRS 7314, Université de Picardie Jules Verne, Hub de l’Energie, 15, rue Baudelocque, 80039 Amiens Cedex, France; Reseau sur le Stockage Electrochimique de l’Energie (RS2E), FR CNRS 3459, Hub de l’Energie, 15, rue Baudelocque, 80039 Amiens Cedex, France; ALISTORE-European Research Institute, FR CNRS 3104, Hub de l’Energie, 15, rue Baudelocque, Amiens Cedex, 80039, FranceCIDETEC, Basque Research and Technology Alliance (BRTA), P°Miramón 196, 20014 Donostia-San Sebastian, SpainCIDETEC, Basque Research and Technology Alliance (BRTA), P°Miramón 196, 20014 Donostia-San Sebastian, SpainCIDETEC, Basque Research and Technology Alliance (BRTA), P°Miramón 196, 20014 Donostia-San Sebastian, SpainALISTORE-European Research Institute, FR CNRS 3104, Hub de l’Energie, 15, rue Baudelocque, Amiens Cedex, 80039, France; CIDETEC, Basque Research and Technology Alliance (BRTA), P°Miramón 196, 20014 Donostia-San Sebastian, SpainCorresponding author at: Laboratoire de Réactivité et Chimie des Solides (LRCS), UMR CNRS 7314, Université de Picardie Jules Verne, Hub de l’Energie, 15, rue Baudelocque, 80039 Amiens Cedex, France.; Laboratoire de Réactivité et Chimie des Solides (LRCS), UMR CNRS 7314, Université de Picardie Jules Verne, Hub de l’Energie, 15, rue Baudelocque, 80039 Amiens Cedex, France; Reseau sur le Stockage Electrochimique de l’Energie (RS2E), FR CNRS 3459, Hub de l’Energie, 15, rue Baudelocque, 80039 Amiens Cedex, France; ALISTORE-European Research Institute, FR CNRS 3104, Hub de l’Energie, 15, rue Baudelocque, Amiens Cedex, 80039, France; Institut Universitaire de France, 103 Boulevard Saint Michel, 75005 Paris, FranceElectrode manufacturing process strongly impacts lithium-ion battery characteristics. The electrode slurry properties and the coating parameters are among the main factors influencing the electrode heterogeneity which impacts the battery cell performance and lifetime. However, the analysis of the impact of electrode manufacturing parameters on the electrode heterogeneity is difficult to be quantified and automatized due to the large number of parameters that can be adjusted in the process. In this work, a data-driven methodology was developed for automatic assessment of the impact of parameters such as the formulation and liquid-to-solid ratio in the slurry, and the gap used for its coating on the current collector, on the electrodes heterogeneity. A dataset generated by experimental measurements was used for training and testing a Machine Learning (ML) classifier namely Gaussian Naives Bayes algorithm, for predicting if an electrode is homogeneous or heterogeneous depending on the manufacturing parameters. Lastly, through a 2D representation, the impact of the manufacturing parameters on the electrode heterogeneity was assessed in detail, paving the way towards a powerful tool for the optimization of next generation of battery electrodes.http://www.sciencedirect.com/science/article/pii/S2666546821000446Machine learningElectrode manufacturingBatteryHeterogeneityData analysis
spellingShingle Marc Duquesnoy
Iker Boyano
Larraitz Ganborena
Pablo Cereijo
Elixabete Ayerbe
Alejandro A. Franco
Machine learning-based assessment of the impact of the manufacturing process on battery electrode heterogeneity
Energy and AI
Machine learning
Electrode manufacturing
Battery
Heterogeneity
Data analysis
title Machine learning-based assessment of the impact of the manufacturing process on battery electrode heterogeneity
title_full Machine learning-based assessment of the impact of the manufacturing process on battery electrode heterogeneity
title_fullStr Machine learning-based assessment of the impact of the manufacturing process on battery electrode heterogeneity
title_full_unstemmed Machine learning-based assessment of the impact of the manufacturing process on battery electrode heterogeneity
title_short Machine learning-based assessment of the impact of the manufacturing process on battery electrode heterogeneity
title_sort machine learning based assessment of the impact of the manufacturing process on battery electrode heterogeneity
topic Machine learning
Electrode manufacturing
Battery
Heterogeneity
Data analysis
url http://www.sciencedirect.com/science/article/pii/S2666546821000446
work_keys_str_mv AT marcduquesnoy machinelearningbasedassessmentoftheimpactofthemanufacturingprocessonbatteryelectrodeheterogeneity
AT ikerboyano machinelearningbasedassessmentoftheimpactofthemanufacturingprocessonbatteryelectrodeheterogeneity
AT larraitzganborena machinelearningbasedassessmentoftheimpactofthemanufacturingprocessonbatteryelectrodeheterogeneity
AT pablocereijo machinelearningbasedassessmentoftheimpactofthemanufacturingprocessonbatteryelectrodeheterogeneity
AT elixabeteayerbe machinelearningbasedassessmentoftheimpactofthemanufacturingprocessonbatteryelectrodeheterogeneity
AT alejandroafranco machinelearningbasedassessmentoftheimpactofthemanufacturingprocessonbatteryelectrodeheterogeneity