Generalised Isentropic Relations in Thermodynamics

Isentropic processes in thermodynamics are fundamental to our understanding of numerous physical phenomena across different scientific and engineering fields. They provide a theoretical reference case for the evaluation of real thermodynamic processes and observations. Yet, as analytical relations f...

Full description

Bibliographic Details
Main Authors: Pim Nederstigt, Rene Pecnik
Format: Article
Language:English
Published: MDPI AG 2023-02-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/16/5/2281
_version_ 1797615449356107776
author Pim Nederstigt
Rene Pecnik
author_facet Pim Nederstigt
Rene Pecnik
author_sort Pim Nederstigt
collection DOAJ
description Isentropic processes in thermodynamics are fundamental to our understanding of numerous physical phenomena across different scientific and engineering fields. They provide a theoretical reference case for the evaluation of real thermodynamic processes and observations. Yet, as analytical relations for isentropic transformations in gas dynamics are limited to ideal gases, the inability to analytically describe isentropic processes for non-ideal gases is a fundamental shortcoming. This work presents generalised isentropic relations in thermodynamics based on the work by Kouremenos et al., where three isentropic exponents <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>γ</mi><mrow><mi>P</mi><mi>v</mi></mrow></msub></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>γ</mi><mrow><mi>T</mi><mi>v</mi></mrow></msub></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>γ</mi><mrow><mi>P</mi><mi>T</mi></mrow></msub></semantics></math></inline-formula> are introduced to replace the ideal gas isentropic exponent <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>γ</mi></semantics></math></inline-formula> to incorporate the departure from the non-ideal gas behaviour. The general applicability of the generalised isentropic relations is presented by exploring its connections to existing isentropic models for ideal gases and incompressible liquids. Generalised formulations for the speed of sound, the Bernoulli equation, compressible isentropic flow transformations, and isentropic work are presented thereafter, connecting previously disjoint theories for gases and liquids. Lastly, the generalised expressions are demonstrated for practical engineering examples, and their accuracy is discussed.
first_indexed 2024-03-11T07:26:29Z
format Article
id doaj.art-59b4e472c6b9425d9467e4b11f2495a6
institution Directory Open Access Journal
issn 1996-1073
language English
last_indexed 2024-03-11T07:26:29Z
publishDate 2023-02-01
publisher MDPI AG
record_format Article
series Energies
spelling doaj.art-59b4e472c6b9425d9467e4b11f2495a62023-11-17T07:36:33ZengMDPI AGEnergies1996-10732023-02-01165228110.3390/en16052281Generalised Isentropic Relations in ThermodynamicsPim Nederstigt0Rene Pecnik1Department of Process & Energy, Delft University of Technology, 2628 CD Delft, The NetherlandsDepartment of Process & Energy, Delft University of Technology, 2628 CD Delft, The NetherlandsIsentropic processes in thermodynamics are fundamental to our understanding of numerous physical phenomena across different scientific and engineering fields. They provide a theoretical reference case for the evaluation of real thermodynamic processes and observations. Yet, as analytical relations for isentropic transformations in gas dynamics are limited to ideal gases, the inability to analytically describe isentropic processes for non-ideal gases is a fundamental shortcoming. This work presents generalised isentropic relations in thermodynamics based on the work by Kouremenos et al., where three isentropic exponents <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>γ</mi><mrow><mi>P</mi><mi>v</mi></mrow></msub></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>γ</mi><mrow><mi>T</mi><mi>v</mi></mrow></msub></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>γ</mi><mrow><mi>P</mi><mi>T</mi></mrow></msub></semantics></math></inline-formula> are introduced to replace the ideal gas isentropic exponent <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>γ</mi></semantics></math></inline-formula> to incorporate the departure from the non-ideal gas behaviour. The general applicability of the generalised isentropic relations is presented by exploring its connections to existing isentropic models for ideal gases and incompressible liquids. Generalised formulations for the speed of sound, the Bernoulli equation, compressible isentropic flow transformations, and isentropic work are presented thereafter, connecting previously disjoint theories for gases and liquids. Lastly, the generalised expressions are demonstrated for practical engineering examples, and their accuracy is discussed.https://www.mdpi.com/1996-1073/16/5/2281isentropic relationsreal gas thermodynamicsspeed of soundcompressible fluid flowscompressibilityisentropic work
spellingShingle Pim Nederstigt
Rene Pecnik
Generalised Isentropic Relations in Thermodynamics
Energies
isentropic relations
real gas thermodynamics
speed of sound
compressible fluid flows
compressibility
isentropic work
title Generalised Isentropic Relations in Thermodynamics
title_full Generalised Isentropic Relations in Thermodynamics
title_fullStr Generalised Isentropic Relations in Thermodynamics
title_full_unstemmed Generalised Isentropic Relations in Thermodynamics
title_short Generalised Isentropic Relations in Thermodynamics
title_sort generalised isentropic relations in thermodynamics
topic isentropic relations
real gas thermodynamics
speed of sound
compressible fluid flows
compressibility
isentropic work
url https://www.mdpi.com/1996-1073/16/5/2281
work_keys_str_mv AT pimnederstigt generalisedisentropicrelationsinthermodynamics
AT renepecnik generalisedisentropicrelationsinthermodynamics