Design of Under-Actuated Soft Adhesion Actuators for Climbing Robots
Since climbing robots mainly rely on adhesion actuators to achieve adhesion, robust adhesion actuators have always been the challenge of climbing robot design. A novel under-actuated soft adhesion actuator (USAA) proposed in this paper for climbing robots can generate adhesion through robot’s load a...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2022-07-01
|
Series: | Sensors |
Subjects: | |
Online Access: | https://www.mdpi.com/1424-8220/22/15/5639 |
_version_ | 1827601612852428800 |
---|---|
author | Zhipeng Liu Linsen Xu Xingcan Liang Jinfu Liu |
author_facet | Zhipeng Liu Linsen Xu Xingcan Liang Jinfu Liu |
author_sort | Zhipeng Liu |
collection | DOAJ |
description | Since climbing robots mainly rely on adhesion actuators to achieve adhesion, robust adhesion actuators have always been the challenge of climbing robot design. A novel under-actuated soft adhesion actuator (USAA) proposed in this paper for climbing robots can generate adhesion through robot’s load applied to the actuator. The actuator is composed of a soft film/substrate structure with an annular groove on the substrate and a cavity on the soft film. To fabricate the actuator, we first study the influence of the geometric parameters of the USAA on the maximum adhesion of the actuator by analysis and experiments, and then combine these parameters and the boundary conditions of the static meniscus in the mold to design the mold. Moreover, we fabricate a climbing robot equipped with USAAs and evaluate its performance on horizontal and inclined surfaces with a wide range of characteristics. The USAA can generate strong and controllable adhesion to various smooth and semi-smooth surfaces. Furthermore, the fabricated robot performs well on various surfaces under a certain load (at least 500 g) and speed (369 mm/min) through experiments. It’s adaptability to a variety of surfaces enables a wide range of applications and pushes the boundaries of soft adhesion actuators. |
first_indexed | 2024-03-09T05:00:00Z |
format | Article |
id | doaj.art-59c5f7edf946442a940e2e44ee2e64e1 |
institution | Directory Open Access Journal |
issn | 1424-8220 |
language | English |
last_indexed | 2024-03-09T05:00:00Z |
publishDate | 2022-07-01 |
publisher | MDPI AG |
record_format | Article |
series | Sensors |
spelling | doaj.art-59c5f7edf946442a940e2e44ee2e64e12023-12-03T13:00:44ZengMDPI AGSensors1424-82202022-07-012215563910.3390/s22155639Design of Under-Actuated Soft Adhesion Actuators for Climbing RobotsZhipeng Liu0Linsen Xu1Xingcan Liang2Jinfu Liu3Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, ChinaCollege of Mechanical and Electrical Engineering, Hohai University, Nanjing 210098, ChinaUniversity of Science and Technology of China, Hefei 230026, ChinaChangzhou Vocationnal Institute of Industry Technology, Changzhou 213018, ChinaSince climbing robots mainly rely on adhesion actuators to achieve adhesion, robust adhesion actuators have always been the challenge of climbing robot design. A novel under-actuated soft adhesion actuator (USAA) proposed in this paper for climbing robots can generate adhesion through robot’s load applied to the actuator. The actuator is composed of a soft film/substrate structure with an annular groove on the substrate and a cavity on the soft film. To fabricate the actuator, we first study the influence of the geometric parameters of the USAA on the maximum adhesion of the actuator by analysis and experiments, and then combine these parameters and the boundary conditions of the static meniscus in the mold to design the mold. Moreover, we fabricate a climbing robot equipped with USAAs and evaluate its performance on horizontal and inclined surfaces with a wide range of characteristics. The USAA can generate strong and controllable adhesion to various smooth and semi-smooth surfaces. Furthermore, the fabricated robot performs well on various surfaces under a certain load (at least 500 g) and speed (369 mm/min) through experiments. It’s adaptability to a variety of surfaces enables a wide range of applications and pushes the boundaries of soft adhesion actuators.https://www.mdpi.com/1424-8220/22/15/5639under-actuated soft adhesion actuatorload-capacity climbing devicecontrollable adhesionadaptability to various surfaces |
spellingShingle | Zhipeng Liu Linsen Xu Xingcan Liang Jinfu Liu Design of Under-Actuated Soft Adhesion Actuators for Climbing Robots Sensors under-actuated soft adhesion actuator load-capacity climbing device controllable adhesion adaptability to various surfaces |
title | Design of Under-Actuated Soft Adhesion Actuators for Climbing Robots |
title_full | Design of Under-Actuated Soft Adhesion Actuators for Climbing Robots |
title_fullStr | Design of Under-Actuated Soft Adhesion Actuators for Climbing Robots |
title_full_unstemmed | Design of Under-Actuated Soft Adhesion Actuators for Climbing Robots |
title_short | Design of Under-Actuated Soft Adhesion Actuators for Climbing Robots |
title_sort | design of under actuated soft adhesion actuators for climbing robots |
topic | under-actuated soft adhesion actuator load-capacity climbing device controllable adhesion adaptability to various surfaces |
url | https://www.mdpi.com/1424-8220/22/15/5639 |
work_keys_str_mv | AT zhipengliu designofunderactuatedsoftadhesionactuatorsforclimbingrobots AT linsenxu designofunderactuatedsoftadhesionactuatorsforclimbingrobots AT xingcanliang designofunderactuatedsoftadhesionactuatorsforclimbingrobots AT jinfuliu designofunderactuatedsoftadhesionactuatorsforclimbingrobots |