Mechanochemical modification of crosslinked low‐density polyethylene: Effect of solid‐state shear pulverization on crosslinks, branches, and chain lengths
Abstract Crosslinked low‐density polyethylene (XLLDPE) is widely used in several specialty plastics industries. However, the permanent chemical crosslinks cause high‐melt viscosity and poor processability, preventing the material from being reused and recycled effectively. This study investigates so...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2022-07-01
|
Series: | SPE Polymers |
Subjects: | |
Online Access: | https://doi.org/10.1002/pls2.10077 |
_version_ | 1818028981306261504 |
---|---|
author | Spencer J. Zack Nathan T. Herrold Katsuyuki Wakabayashi |
author_facet | Spencer J. Zack Nathan T. Herrold Katsuyuki Wakabayashi |
author_sort | Spencer J. Zack |
collection | DOAJ |
description | Abstract Crosslinked low‐density polyethylene (XLLDPE) is widely used in several specialty plastics industries. However, the permanent chemical crosslinks cause high‐melt viscosity and poor processability, preventing the material from being reused and recycled effectively. This study investigates solid‐state shear pulverization (SSSP) as a continuous, commercially viable mechanochemical processing technique to initiate the decrosslinking of XLLDPE for mechanical recycling. Post‐industrial XLLDPE scrap material was processed using SSSP with a range of pulverization conditions, which were correlated with universal processing covariants of specific mechanical energy and particle size distribution. The physical properties of SSSP‐processed materials were compared to as‐received XLLDPE and uncrosslinked low‐density polyethylene. While gel content tests confirm a gradual decrease in crosslinking density with a more energy‐intensive SSSP process, melt rheology and dynamic mechanical analysis characterization revealed additional chain architecture modifications such as branching and chain scission. Based on differential scanning calorimetry and thermogravimetric analysis, the SSSP‐processed XLLDPE retained its thermal stability and crystallinity; tensile testing results showed improved stiffness, strength, and toughness. These results indicate that tunable SSSP can transform XLLDPE into a decrosslinked, branched, and melt‐processable recycled polyethylene. |
first_indexed | 2024-12-10T05:12:25Z |
format | Article |
id | doaj.art-59c653c05a144813b4a388b96c4f3d1a |
institution | Directory Open Access Journal |
issn | 2690-3857 |
language | English |
last_indexed | 2024-12-10T05:12:25Z |
publishDate | 2022-07-01 |
publisher | Wiley |
record_format | Article |
series | SPE Polymers |
spelling | doaj.art-59c653c05a144813b4a388b96c4f3d1a2022-12-22T02:01:03ZengWileySPE Polymers2690-38572022-07-013315216210.1002/pls2.10077Mechanochemical modification of crosslinked low‐density polyethylene: Effect of solid‐state shear pulverization on crosslinks, branches, and chain lengthsSpencer J. Zack0Nathan T. Herrold1Katsuyuki Wakabayashi2Department of Mechanical Engineering Bucknell University Lewisburg Pennsylvania USADepartment of Chemical Engineering Bucknell University Lewisburg Pennsylvania USADepartment of Chemical Engineering Bucknell University Lewisburg Pennsylvania USAAbstract Crosslinked low‐density polyethylene (XLLDPE) is widely used in several specialty plastics industries. However, the permanent chemical crosslinks cause high‐melt viscosity and poor processability, preventing the material from being reused and recycled effectively. This study investigates solid‐state shear pulverization (SSSP) as a continuous, commercially viable mechanochemical processing technique to initiate the decrosslinking of XLLDPE for mechanical recycling. Post‐industrial XLLDPE scrap material was processed using SSSP with a range of pulverization conditions, which were correlated with universal processing covariants of specific mechanical energy and particle size distribution. The physical properties of SSSP‐processed materials were compared to as‐received XLLDPE and uncrosslinked low‐density polyethylene. While gel content tests confirm a gradual decrease in crosslinking density with a more energy‐intensive SSSP process, melt rheology and dynamic mechanical analysis characterization revealed additional chain architecture modifications such as branching and chain scission. Based on differential scanning calorimetry and thermogravimetric analysis, the SSSP‐processed XLLDPE retained its thermal stability and crystallinity; tensile testing results showed improved stiffness, strength, and toughness. These results indicate that tunable SSSP can transform XLLDPE into a decrosslinked, branched, and melt‐processable recycled polyethylene.https://doi.org/10.1002/pls2.10077crosslinkingextrusionpolyethyleneprocessingrecyclingstructure‐property relations |
spellingShingle | Spencer J. Zack Nathan T. Herrold Katsuyuki Wakabayashi Mechanochemical modification of crosslinked low‐density polyethylene: Effect of solid‐state shear pulverization on crosslinks, branches, and chain lengths SPE Polymers crosslinking extrusion polyethylene processing recycling structure‐property relations |
title | Mechanochemical modification of crosslinked low‐density polyethylene: Effect of solid‐state shear pulverization on crosslinks, branches, and chain lengths |
title_full | Mechanochemical modification of crosslinked low‐density polyethylene: Effect of solid‐state shear pulverization on crosslinks, branches, and chain lengths |
title_fullStr | Mechanochemical modification of crosslinked low‐density polyethylene: Effect of solid‐state shear pulverization on crosslinks, branches, and chain lengths |
title_full_unstemmed | Mechanochemical modification of crosslinked low‐density polyethylene: Effect of solid‐state shear pulverization on crosslinks, branches, and chain lengths |
title_short | Mechanochemical modification of crosslinked low‐density polyethylene: Effect of solid‐state shear pulverization on crosslinks, branches, and chain lengths |
title_sort | mechanochemical modification of crosslinked low density polyethylene effect of solid state shear pulverization on crosslinks branches and chain lengths |
topic | crosslinking extrusion polyethylene processing recycling structure‐property relations |
url | https://doi.org/10.1002/pls2.10077 |
work_keys_str_mv | AT spencerjzack mechanochemicalmodificationofcrosslinkedlowdensitypolyethyleneeffectofsolidstateshearpulverizationoncrosslinksbranchesandchainlengths AT nathantherrold mechanochemicalmodificationofcrosslinkedlowdensitypolyethyleneeffectofsolidstateshearpulverizationoncrosslinksbranchesandchainlengths AT katsuyukiwakabayashi mechanochemicalmodificationofcrosslinkedlowdensitypolyethyleneeffectofsolidstateshearpulverizationoncrosslinksbranchesandchainlengths |